题意:给出m行n列的棋盘,当两皇后在同行同列或同对角线上时可以互相攻击,问共有多少种攻击方式。
分析:首先可以利用加法原理分情况讨论:①两皇后在同一行;②两皇后在同一列;③两皇后在同一对角线( / 或 \ );
其次利用乘法原理分别讨论:
①同一行时(A),先选某一行某一列放置其中一个皇后,共m*n种情况;其次在选出的这一行里的其他n-1个位置中选一个放另一个皇后;共m*n*(n-1)种情况;
②同一列时(B)情况相同,为n*m*(m-1)种情况;
③同一对角线(D)上时,先讨论 / 方向对角线:
为方便假设m>=n,则从左到右每条对角线长度依次为:
1,2,3,... ...,n-1,n,n,... ...,n,n,n-1,... ... 3,2,1
其中中间的n有(m-n+1)个;
则共有: (1*0 + 2*1 + ... + (n-1)*(n-2)) * 2 + (m-n+1)*n*(n-1) 种情况;
其中∑[1,n-1] (i*(i-1)) = ∑[1,n-1] (i*i - i) = ∑[1,n-1] (i*i) - ∑[1,n-1] (i) ;
又∑[1,n-1] (i*i) = n*(n-1)*(2n-1) / 6; ∑(1,n-1) (i) = n*(n-1) / 2;
则原式可化简为 n*(n-1)*(2n-4)/3 + (m-n+1)*n*(n-1);
再加上 \ 对角线的情况,与上述相同,则D = 2*(n*(n-1)*(2n-4)/3 + (m-n+1)*n*(n-1));
答案为A+B+D;
代码如下
1 #include<iostream> 2 #include<cstdio> 3 #include<cstdlib> 4 using namespace std; 5 6 typedef unsigned long long ULL; 7 8 int main() 9 { 10 ULL m, n; 11 while(cin >> m >> n) 12 { 13 if(!m && !n) break; 14 if(m<n) swap(m, n); 15 ULL A = m*n*(n-1), B = n*m*(m-1); 16 ULL D = 2*(n*(n-1)*(2*n-4)/3 + (m-n+1)*n*(n-1)); 17 cout << A+B+D << endl; 18 } 19 return 0; 20 }
【基本计数方法---加法原理和乘法原理】UVa 11538 - Chess Queen
原文:http://www.cnblogs.com/LLGemini/p/4373406.html