这题用n^2的算法能过,先任意枚举两点,和圆心组成的三角形求面积,这个面积可能会被加(n - 2)次,但是要注意,如果有3点是在同一侧,那么要减去,于是在枚举一遍,每次枚举一个点,然后枚举和这个点度数相差180以内的点,求面积,这个面积要减去2 * (j - i + 1)次
代码:
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const int N = 505; const double PI = acos(-1.0); int n; double r, d[N * 2]; struct Point { double x, y; Point() {} Point(double x, double y) { this->x = x; this->y = y; } }; typedef Point Vector; Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } inline double Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;} //叉积 inline double Area2(Point A, Point B, Point C) {return Cross(B - A, C - A);} //有向面积 inline double Are(Point A, Point B, Point C) {return fabs(Area2(A, B, C)) / 2;} inline Point getP(double d) { double rad = d / 180 * PI; return Point(cos(rad) * r, sin(rad) * r); } int main() { while (~scanf("%d%lf", &n, &r) && n || r) { for (int i = 0; i < n; i++) scanf("%lf", &d[i]); sort(d, d + n); double ans = 0; for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) ans += Are(Point(0, 0), getP(d[i]), getP(d[j])) * (n - 2); for (int i = 0; i < n; i++) d[i + n] = d[i] + 360; for (int i = 0; i < n; i++) { for (int j = i + 2; d[j] - d[i] < 180; j++) { ans -= 2 * Are(Point(0, 0), getP(d[i]), getP(d[j % n])) * (j - i - 1); } } printf("%.0f\n", ans); } return 0; }
UVA 11186 - Circum Triangle(计算几何+容斥)
原文:http://blog.csdn.net/accelerator_/article/details/44698869