Given a string, we need to find the total number of its distinct substrings.
Input
T- number of test cases. T<=20;
Each test case consists of one string, whose length is <= 1000
Output
For each test case output one number saying the number of distinct substrings.
Example
Sample Input:
2
CCCCC
ABABA
Sample Output:
5
9
Explanation for the testcase with string ABABA:
len=1 : A,B
len=2 : AB,BA
len=3 : ABA,BAB
len=4 : ABAB,BABA
len=5 : ABABA
Thus, total number of distinct substrings is 9.
求不同子串个数,每一个子串都是字符串的后缀的前缀,从suffix(sa[0])开始,每次加入一个新的后缀,子串个数加了n - sa[i] + 1个,其中height[i]个是与之前那个后缀的LCP,是重复的,需要去掉
所以加了n - sa[i] + 1 - height[i]个
/*************************************************************************
> File Name: SPOJ694.cpp
> Author: ALex
> Mail: zchao1995@gmail.com
> Created Time: 2015年03月31日 星期二 18时27分46秒
************************************************************************/
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#include <set>
#include <vector>
using namespace std;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
class SuffixArray
{
public:
static const int N = 1010;
int init[N];
int X[N];
int Y[N];
int Rank[N];
int sa[N];
int height[N];
int buc[N];
int size;
void clear()
{
size = 0;
}
void insert(int n)
{
init[size++] = n;
}
bool cmp(int *r, int a, int b, int l)
{
return (r[a] == r[b] && r[a + l] == r[b + l]);
}
void getsa(int m = 256)
{
init[size] = 0;
int l, p, *x = X, *y = Y, n = size + 1;
for (int i = 0; i < m; ++i)
{
buc[i] = 0;
}
for (int i = 0; i < n; ++i)
{
++buc[x[i] = init[i]];
}
for (int i = 1; i < m; ++i)
{
buc[i] += buc[i - 1];
}
for (int i = n - 1; i >= 0; --i)
{
sa[--buc[x[i]]] = i;
}
for (l = 1, p = 1; l <= n && p < n; m = p, l *= 2)
{
p = 0;
for (int i = n - l; i < n; ++i)
{
y[p++] = i;
}
for (int i = 0; i < n; ++i)
{
if (sa[i] >= l)
{
y[p++] = sa[i] - l;
}
}
for (int i = 0; i < m; ++i)
{
buc[i] = 0;
}
for (int i = 0; i < n; ++i)
{
++buc[x[y[i]]];
}
for (int i = 1; i < m; ++i)
{
buc[i] += buc[i - 1];
}
for (int i = n - 1; i >= 0; --i)
{
sa[--buc[x[y[i]]]] = y[i];
}
int i;
for (swap(x, y), x[sa[0]] = 0, p = 1, i = 1; i < n; ++i)
{
x[sa[i]] = cmp(y, sa[i - 1], sa[i], l) ? p - 1 : p++;
}
}
}
void getheight()
{
int h = 0, n = size;
for (int i = 0; i <= n; ++i)
{
Rank[sa[i]] = i;
}
height[0] = 0;
for (int i = 0; i < n; ++i)
{
if (h > 0)
{
--h;
}
int j = sa[Rank[i] - 1];
for (; i + h < n && j + h < n && init[i + h] == init[j + h]; ++h);
height[Rank[i] - 1] = h;
}
}
void solve()
{
int ans = 0;
for (int i = 1; i <= size; ++i)
{
ans += size - sa[i] - height[i - 1];
}
printf("%d\n", ans);
}
}SA;
char str[1010];
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
scanf("%s", str);
SA.clear();
int len = strlen(str);
int maxs = 0;
for (int i = 0; i < len; ++i)
{
SA.insert((int)str[i]);
maxs = max(maxs, (int)str[i]);
}
SA.getsa(maxs + 1);
SA.getheight();
SA.solve();
}
return 0;
}
SPOJ694--- DISUBSTR - Distinct Substrings(后缀数组)
原文:http://blog.csdn.net/guard_mine/article/details/44783569