首页 > 其他 > 详细

Maximum Subarray

时间:2014-03-13 15:36:23      阅读:489      评论:0      收藏:0      [点我收藏+]

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [?2,1,?3,4,?1,2,1,?5,4],
the contiguous subarray [4,?1,2,1] has the largest sum = 6.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

more practice是搞笑的。
还有更简单的方法,懒得改了。事实证明看书太多也不好。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
    int maxSubArray(int A[], int n) {
        vector<int> sum;
        if(n == 0)return 0;
        int maxsum =A[0];
        sum.push_back(A[0]);
        for(int i = 1 ; i < n ; i++)
        {
            int temp = sum[i-1]+A[i];
            if(temp > maxsum)maxsum = temp;
            sum.push_back(temp);
        }
 
        int min = 0;
        for(int i = 1 ; i < n;i++)
        {
            if(sum[i] - sum[min] > maxsum)
            maxsum = sum[i] - sum[min];
            if(sum[i] < sum[min])min = i;
        }
         
         
        return maxsum;
    }
};

  

Maximum Subarray,布布扣,bubuko.com

Maximum Subarray

原文:http://www.cnblogs.com/pengyu2003/p/3595264.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!