Time Limit: 2000MS | Memory Limit: 131072K | |
Total Submissions: 1403 | Accepted: 290 |
Description
We have N (N ≤ 10000) objects, and wish to classify them into several groups by judgement of their resemblance. To simply the model, each object has 2 indexes a and b (a, b ≤ 500). The resemblance of object i and object j is defined by dij = |ai - aj| + |bi - bj|, and then we say i is dij resemble to j. Now we want to find the minimum value of X, so that we can classify the N objects into K (K < N) groups, and in each group, one object is at most X resemble to another object in the same group, i.e, for every object i, if i is not the only member of the group, then there exists one object j (i ≠ j) in the same group that satisfies dij ≤ X
Input
The first line contains two integers N and K. The following N lines each contain two integers a and b, which describe a object.
Output
A single line contains the minimum X.
Sample Input
6 2 1 2 2 3 2 2 3 4 4 3 3 1
Sample Output
2
给定平面内一堆点,求曼哈顿距离最小生成树第k大边,
这个结论可以证明如下:假设我们以点A为原点建系,考虑在y轴向右45度区域内的任意两点B(x1,y1)和C(x2,y2),不妨设|AB|≤|AC|(这里的距离为曼哈顿距离),如下图:
|AB|=x1+y1,|AC|=x2+y2,|BC|=|x1-x2|+|y1-y2|。而由于B和C都在y轴向右45度的区域内,有y-x>0且x>0。下面我们分情况讨论:
1. x1>x2且y1>y2。这与|AB|≤|AC|矛盾;
2. x1≤x2且y1>y2。此时|BC|=x2-x1+y1-y2,|AC|-|BC|=x2+y2-x2+x1-y1+y2=x1-y1+2*y2。由前面各种关系可得y1>y2>x2>x1。假设|AC|<|BC|即y1>2*y2+x1,那么|AB|=x1+y1>2*x1+2*y2,|AC|=x2+y2<2*y2<|AB|与前提矛盾,故|AC|≥|BC|;
3. x1>x2且y1≤y2。与2同理;
4. x1≤x2且y1≤y2。此时显然有|AB|+|BC|=|AC|,即有|AC|>|BC|。
综上有|AC|≥|BC|,也即在这个区域内只需选择距离A最近的点向A连边。
转自:http://blog.csdn.net/huzecong/article/details/8576908/* *********************************************** Author :rabbit Created Time :2014/3/12 13:48:39 File Name :1.cpp ************************************************ */ #pragma comment(linker, "/STACK:102400000,102400000") #include <stdio.h> #include <iostream> #include <algorithm> #include <sstream> #include <stdlib.h> #include <string.h> #include <limits.h> #include <string> #include <time.h> #include <math.h> #include <queue> #include <stack> #include <set> #include <map> using namespace std; #define INF 0x3f3f3f3f #define eps 1e-8 #define pi acos(-1.0) typedef long long ll; const int maxn=100100; struct Point{ int x,y,id; bool operator < (const Point p) const { if(x!=p.x)return x<p.x; return y<p.y; } }p[maxn]; struct BIT{ int min_val,pos; void init(){ min_val=INF; pos=-1; } }bit[maxn<<2]; struct Edge{ int u,v,d; bool operator < (const Edge p) const { return d<p.d; } }edge[maxn<<2]; int tot,n,F[maxn]; int find(int x){ return F[x]=(F[x]==x?x:find(F[x])); } void addedge(int u,int v,int d){ edge[tot].u=u;edge[tot].v=v;edge[tot].d=d;tot++; } void update(int i,int val,int pos){ while(i>0){ if(val<bit[i].min_val){ bit[i].min_val=val; bit[i].pos=pos; } i-=i&(-i); } } int ask(int i,int m){ int min_val=INF,pos=-1; while(i<=m){ if(bit[i].min_val<min_val){ min_val=bit[i].min_val; pos=bit[i].pos; } i+=i&(-i); } return pos; } int dist(Point a,Point b){ return abs(a.y-b.y)+abs(a.x-b.x); } int MHT(int n,Point *p,int k){ int a[maxn],b[maxn]; tot=0; for(int dir=0;dir<4;dir++){ if(dir==1||dir==3){ for(int i=0;i<n;i++) swap(p[i].x,p[i].y); } if(dir==2){ for(int i=0;i<n;i++) p[i].x=-p[i].x; } sort(p,p+n); for(int i=0;i<n;i++) a[i]=b[i]=p[i].y-p[i].x; sort(b,b+n); int m=unique(b,b+n)-b; for(int i=1;i<=m;i++)bit[i].init(); for(int i=n-1;i>=0;i--){ int pos=lower_bound(b,b+m,a[i])-b+1; int ans=ask(pos,m); if(ans!=-1)addedge(p[i].id,p[ans].id,dist(p[i],p[ans])); update(pos,p[i].x+p[i].y,i); } } sort(edge,edge+tot); for(int i=0;i<n;i++)F[i]=i; for(int i=0;i<tot;i++){ int u=edge[i].u,v=edge[i].v; int fa=find(u),fb=find(v); if(fa!=fb){ k--; F[fa]=fb; if(k==0)return edge[i].d; } } } int main() { //freopen("data.in","r",stdin); //freopen("data.out","w",stdout); int n,k; while(~scanf("%d%d",&n,&k)){ for(int i=0;i<n;i++)scanf("%d%d",&p[i].x,&p[i].y),p[i].id=i; cout<<MHT(n,p,n-k)<<endl; } return 0; }
原文:http://blog.csdn.net/xianxingwuguan1/article/details/21089125