首页 > 其他 > 详细

【转载】Relevant literature

时间:2015-04-20 20:48:26      阅读:241      评论:0      收藏:0      [点我收藏+]

Relevant literature

Book chapter about the philosophy behind deep architecture model, motivating them in the context of Artificial Intelligence

 

  • Scaling Learning Algorithms towards AI | pdf |
    Bengio, Y. and LeCun, Y. 
    Book chapter in "Large-Scale Kernel Machines"

Introducing Deep Belief Networks as generative models:

 

  • A fast learning algorithm for deep belief nets | pdf ps.gz html | 
    Hinton, G. E., Osindero, S. and Teh, Y. 
    Neural Computation (2006)

Deep Belief Networks as a simple way of initializing a deep feed-forward neural network:

 

  • To recognize shapes, first learn to generate images | pdf | 
    Hinton, G. E. 
    Technical Report (2006) 

General study of the framework of initializing a deep feed-forward neural network using a greedy layer-wise procedure:

 

  • Greedy Layer-Wise Training of Deep Networks | pdf tech-report-pdf | 
    Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. 
    NIPS 2006

An application of greedy layer-wise learning of a deep autoassociator for dimensionality reduction:

 

  • Reducing the dimensionality of data with neural networks | pdf support-pdf code | 
    Hinton, G. E. and Salakhutdinov, R. R. 
    Science 2006

A way to use the greedy layer-wise learning procedure to learn a useful embeding for k nearest neighbor classification:

 

  • Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure | pdf | 
    Salakhutdinov, R. R. and Hinton, G. E. 
    AISTATS 2007

Different theoretical results about Restricted Boltzmann Machines (RBMs) and Deep Belief Networks, like the universal approximation property of RBMs:

 

  • Representational Power of Restricted Boltzmann Machines and Deep Belief Networks | pdf | 
    Le Roux, N. and Bengio, Y. 
    Technical Report

A novel way of using greedy layer-wise learning for Convolutional Networks:

 

  • Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition | pdf | 
    Ranzato, M‘A, Huang, F-J, Boureau, Y-L, and Le Cun, Y. 
    CVPR 2007

How to generalize Restricted Boltzmann Machines to types of data other than binary using exponential familly distribution:

 

  • Exponential Family Harmoniums with an Application to Information Retrieval | pdf ps | 
    Welling, M., Rosen-Zvi, M. and Hinton, G. E. 
    NIPS 2004

An evaluation of deep networks on many datasets related to vision:

 

  • An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation | pdf html | 
    Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y. 
    ICML 2007

Application of deep learning in the context of information retrieval:

 

    • Semantic Hashing | pdf | 
      Salakhutdinov, R. R. and Hinton, G. E. 
      IRGM 2007

【转载】Relevant literature

原文:http://www.cnblogs.com/daleloogn/p/4442391.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!