首页 > 移动平台 > 详细

URAL - 1828 Approximation by a Progression(最小二乘法)

时间:2015-04-21 09:42:57      阅读:209      评论:0      收藏:0      [点我收藏+]
Time Limit: 500MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u

 Status

Description

Your are given a sequence of integers a1, …, an. Find an arithmetic progression b1, …, bn for which the value ∑( ai ? bi) 2 is minimal. The elements of the progression can be non-integral.

Input

The first line contains the number n of elements in the sequence (2 ≤ n ≤ 10 4). In the second line you are given the integers a1, …, an; their absolute values do not exceed 10 4.

Output

Output two numbers separated with a space: the first term of the required arithmetic progression and its difference, with an absolute or relative error of at most 10 ?6. It is guaranteed that the answer is unique for all input data.

Sample Input

input output
4
0 6 10 15
0.400 4.900
4
-2 -2 -2 -2
-2 0


arithmetic progression 等差数列的通式an=a1+(n-1)*d,即an=(a1-d)+n*d 是直线方程的形式,而(i,mi)是分布在直线两边的点,要求直线的 k=d,b=a1-d,于是想到最小二乘法,对Y=kX+b , 有 k=((XY)平--X平*Y平)/((X^2)平--(X平)^2),  b=Y平--kX平。按公式求就好了。

#include<iostream>
#include<iomanip>
using namespace std;
const int MAXN = 10005;
double a[MAXN];
int main()
{
	int n;
	while (cin >> n)
	{
		for (int i = 1; i <= n; i++)
			cin >> a[i];
		double xy=0, x=0, y=0, x2=0;
		for (int i = 1; i <= n; i++)
		{
			xy = xy + a[i] * i;
			x = x + i;
			y = y + a[i];
			x2 = x2 + i*i;
		}
		double k = (xy/n -(x/n)*(y/n)) / (x2/n  - (x/n)*(x/n));
		double b = y / n - k*(x / n);
		double a1 = b + k;
		double d = k;
		cout <<fixed<<setprecision(6)<< a1 << " " <<fixed<<setprecision(6)<<k << endl;
	}
}


URAL - 1828 Approximation by a Progression(最小二乘法)

原文:http://blog.csdn.net/qq_18738333/article/details/45161771

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!