注:原文代码链接http://scikit-learn.org/stable/auto_examples/text/mlcomp_sparse_document_classification.html
运行结果为:
Loading 20 newsgroups training set... 20 newsgroups dataset for document classification (http://people.csail.mit.edu/jrennie/20Newsgroups) 13180 documents 20 categories Extracting features from the dataset using a sparse vectorizer done in 139.231000s n_samples: 13180, n_features: 130274 Loading 20 newsgroups test set... done in 0.000000s Predicting the labels of the test set... 5648 documents 20 categories Extracting features from the dataset using the same vectorizer done in 7.082000s n_samples: 5648, n_features: 130274 Testbenching a linear classifier... parameters: {‘penalty‘: ‘l2‘, ‘loss‘: ‘hinge‘, ‘alpha‘: 1e-05, ‘fit_intercept‘: True, ‘n_iter‘: 50} done in 22.012000s Percentage of non zeros coef: 30.074190 Predicting the outcomes of the testing set done in 0.172000s Classification report on test set for classifier: SGDClassifier(alpha=1e-05, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate=‘optimal‘, loss=‘hinge‘, n_iter=50, n_jobs=1, penalty=‘l2‘, power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) precision recall f1-score support alt.atheism 0.95 0.93 0.94 245 comp.graphics 0.85 0.91 0.88 298 comp.os.ms-windows.misc 0.88 0.88 0.88 292 comp.sys.ibm.pc.hardware 0.82 0.80 0.81 301 comp.sys.mac.hardware 0.90 0.92 0.91 256 comp.windows.x 0.92 0.88 0.90 297 misc.forsale 0.87 0.89 0.88 290 rec.autos 0.93 0.94 0.94 324 rec.motorcycles 0.97 0.97 0.97 294 rec.sport.baseball 0.97 0.97 0.97 315 rec.sport.hockey 0.98 0.99 0.99 302 sci.crypt 0.97 0.96 0.96 297 sci.electronics 0.87 0.89 0.88 313 sci.med 0.97 0.97 0.97 277 sci.space 0.97 0.97 0.97 305 soc.religion.christian 0.95 0.96 0.95 293 talk.politics.guns 0.94 0.94 0.94 246 talk.politics.mideast 0.97 0.99 0.98 296 talk.politics.misc 0.96 0.92 0.94 236 talk.religion.misc 0.89 0.84 0.86 171 avg / total 0.93 0.93 0.93 5648 Confusion matrix: [[227 0 0 0 0 0 0 0 0 0 0 1 2 1 1 1 0 1 0 11] [ 0 271 3 8 2 5 2 0 0 1 0 0 3 1 1 0 0 1 0 0] [ 0 7 256 14 5 6 1 0 0 0 0 0 2 0 1 0 0 0 0 0] [ 1 8 12 240 9 3 12 2 0 0 0 1 12 0 0 1 0 0 0 0] [ 0 1 3 6 235 2 4 0 0 0 0 1 3 0 1 0 0 0 0 0] [ 0 17 9 4 0 260 0 0 1 1 0 0 2 0 2 0 1 0 0 0] [ 0 1 3 7 3 0 257 7 2 0 0 1 8 0 1 0 0 0 0 0] [ 0 0 0 2 1 0 5 305 2 3 0 0 4 1 0 0 1 0 0 0] [ 0 0 0 0 1 0 3 3 285 0 0 0 1 0 0 1 0 0 0 0] [ 0 0 0 0 0 0 3 2 0 305 2 1 1 0 0 0 0 0 1 0] [ 0 0 0 0 0 0 1 0 1 0 300 0 0 0 0 0 0 0 0 0] [ 0 0 1 1 0 2 0 1 0 0 0 284 0 1 1 0 2 2 1 1] [ 0 2 2 10 2 2 6 5 1 0 1 1 279 1 1 0 0 0 0 0] [ 0 3 0 0 1 1 1 0 0 0 0 0 0 269 0 1 1 0 0 0] [ 0 5 0 0 1 0 0 0 0 0 2 0 1 0 295 0 0 0 1 0] [ 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 282 1 0 0 3] [ 0 0 1 0 0 0 0 0 1 3 0 0 1 0 0 1 232 1 5 1] [ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 293 0 0] [ 0 2 0 0 0 0 2 0 0 1 0 1 0 1 0 0 7 4 216 2] [ 11 0 0 0 0 0 0 0 0 0 0 1 0 2 0 9 2 1 2 143]] Testbenching a MultinomialNB classifier... parameters: {‘alpha‘: 0.01} done in 0.608000s Percentage of non zeros coef: 100.000000 Predicting the outcomes of the testing set done in 0.203000s Classification report on test set for classifier: MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True) precision recall f1-score support alt.atheism 0.90 0.92 0.91 245 comp.graphics 0.81 0.89 0.85 298 comp.os.ms-windows.misc 0.87 0.83 0.85 292 comp.sys.ibm.pc.hardware 0.82 0.83 0.83 301 comp.sys.mac.hardware 0.90 0.92 0.91 256 comp.windows.x 0.90 0.89 0.89 297 misc.forsale 0.90 0.84 0.87 290 rec.autos 0.93 0.94 0.93 324 rec.motorcycles 0.98 0.97 0.97 294 rec.sport.baseball 0.97 0.97 0.97 315 rec.sport.hockey 0.97 0.99 0.98 302 sci.crypt 0.95 0.95 0.95 297 sci.electronics 0.90 0.86 0.88 313 sci.med 0.97 0.96 0.97 277 sci.space 0.95 0.97 0.96 305 soc.religion.christian 0.91 0.97 0.94 293 talk.politics.guns 0.89 0.96 0.93 246 talk.politics.mideast 0.95 0.98 0.97 296 talk.politics.misc 0.93 0.87 0.90 236 talk.religion.misc 0.92 0.74 0.82 171 avg / total 0.92 0.92 0.92 5648 Confusion matrix: [[226 0 0 0 0 0 0 0 0 1 0 0 0 0 2 7 0 0 0 9] [ 1 266 7 4 1 6 2 2 0 0 0 3 4 1 1 0 0 0 0 0] [ 0 11 243 22 4 7 1 0 0 0 0 1 2 0 0 0 0 0 1 0] [ 0 7 12 250 8 4 9 0 0 1 1 0 9 0 0 0 0 0 0 0] [ 0 3 3 5 235 2 3 1 0 0 0 2 1 0 1 0 0 0 0 0] [ 0 19 5 3 2 263 0 0 0 0 0 1 0 1 1 0 2 0 0 0] [ 0 1 4 9 3 1 243 9 2 3 1 0 8 0 0 0 2 2 2 0] [ 0 0 0 1 1 0 5 304 1 2 0 0 3 2 3 1 1 0 0 0] [ 0 0 0 0 0 2 2 3 285 0 0 0 1 0 0 0 0 0 0 1] [ 0 1 0 0 0 1 1 3 0 304 5 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 1 2 299 0 0 0 0 0 0 0 0 0] [ 0 2 2 1 0 1 2 0 0 0 0 283 1 0 0 0 2 1 2 0] [ 0 11 1 9 3 1 3 5 1 0 1 4 270 1 3 0 0 0 0 0] [ 0 2 0 1 1 1 0 0 0 0 0 1 0 266 2 1 0 0 2 0] [ 0 2 0 0 1 0 0 0 0 0 0 2 1 1 296 0 1 1 0 0] [ 3 1 0 0 0 0 0 0 0 0 1 0 0 2 0 283 0 1 2 0] [ 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 237 1 3 1] [ 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 291 0 0] [ 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 17 6 206 0] [ 18 1 0 0 0 0 0 0 0 1 0 0 0 0 0 14 4 2 4 127]]
步骤为:
一、preprocessing
1.加载训练集(training set)
2.训练集特征提取,用TfidfVectorizer,得到训练集上的x_train和y_train
3.加载测试集(test set)
4.测试集特征提取,用TfidfVectorizer,得到测试集上的x_train和y_train
二、定义Benchmark classifiers
5.训练,clf = clf_class(**params).fit(X_train, y_train)
6.测试,pred = clf.predict(X_test)
7.测试集上分类报告,print(classification_report(y_test, pred,target_names=news_test.target_names))
8.confusion matrix,cm = confusion_matrix(y_test, pred)
三、训练
9.调用两个分类器,SGDClassifier和MultinomialNB
Classification of text documents: using a MLComp dataset
原文:http://www.cnblogs.com/gui0901/p/4456267.html