输入代码:
/*
* Copyright (c) 2015, 烟台大学计算机学院
* All rights reserved.
* 文件名称:sum123.cpp
* 作 者:林海云
* 完成日期:2015年4月26日
* 版 本 号:v2.0
*
* 问题描述: 阅读教材例10.1。该例实现了一个复数类,但是美中不足的是,复数类的实部和虚部都固定只能是double型的。可以通过模板类的技术手段,设计Complex,使实部和虚部的类型为定义对象时指定的实际类型。
(1)要求类成员函数在类外定义。
(2)在此基础上,再实现减法、乘法和除法
* 输入描述: 无
* 程序输出: 按要求的复数计算结果
*/
#include<iostream>
using namespace std;
template<class T>
class Complex
{
public :
Complex( )
{
real=0;
imag=0;
}
Complex(T r,T i)
{
real=r;
imag=i;
}
Complex complex_add(Complex &c2);
Complex complex_minus(Complex &c2);
Complex complex_multiply(Complex &c2);
Complex complex_divide(Complex &c2);
void display();
private:
T real;
T imag;
};
//定义加法运算的函数
template<class T>
Complex<T> Complex<T>::complex_add(Complex &c2)
{
Complex<T> c;
c.real=real+c2.real;
c.imag=imag+c2.imag;
return c;
}
//定义减法运算的函数
template<class T>
Complex<T> Complex<T>::complex_minus(Complex &c2)
{
Complex<T> c;
c.real=real-c2.real;
c.imag=imag-c2.imag;
return c;
}
//定义乘法运算的函数
template<class T>
Complex<T> Complex<T>::complex_multiply(Complex &c2)
{
Complex<T> c;
c.real=real*c2.real-imag*c2.imag;
c.imag=real*c2.real+imag*c2.imag;
return c;
}
//定义除法运算的函数
template<class T>
Complex<T> Complex<T>::complex_divide(Complex &c2)
{
Complex<T> c;
T d=c2.real*c2.real+c2.imag*c2.imag;
c.real=(real*c2.real+imag*c2.imag)/d;//使虚数的分母有理化
c.imag=(imag*c2.real-real*c2.imag)/d;
return c;
}
template <class T>
void Complex<T>::display()
{
cout<<"("<<real<<","<<imag<<"i)"<<endl;
}
int main( )
{
Complex<int> c1(3,4),c2(5,-10),c3;
cout<<"c1=";
c1.display( );
cout<<"c2=";
c2.display( );
c3=c1.complex_add(c2);
cout<<"c1+c2=";
c3.display( );
c3=c1.complex_minus(c2);
cout<<"c1-c2=";
c3.display( );
c3=c1.complex_multiply(c2);
cout<<"c1*c2=";
c3.display( );
c3=c1.complex_divide(c2);
cout<<"c1/c2=";
c3.display( );
cout<<endl;
Complex<double> c4(3.1,4.4),c5(5.34,-10.21),c6; //定义对象时,用“类模板名<实际类型名>”形式
cout<<"c4=";
c4.display( );
cout<<"c5=";
c5.display( );
c6=c4.complex_add(c5);
cout<<"c4+c5=";
c6.display( );
c6=c4.complex_minus(c5);
cout<<"c4-c5=";
c6.display( );
c6=c4.complex_multiply(c5);
cout<<"c4*c5=";
c6.display( );
c6=c4.complex_divide(c5);
cout<<"c4/c5=";
c6.display( );
return 0;
}
运行结果:
原文:http://blog.csdn.net/linhaiyun_ytdx/article/details/45289591