首页 > 其他 > 详细

sdutoj Rescue The Princess

时间:2015-04-28 22:38:30      阅读:429      评论:0      收藏:0      [点我收藏+]

http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2603

Rescue The Princess

 

Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描述

    Several days ago, a beast caught a beautiful princess and the princess was put in prison. To rescue the princess, a prince who wanted to marry the princess set out immediately. Yet, the beast set a maze. Only if the prince find out the maze’s exit can he save the princess.

    Now, here comes the problem. The maze is a dimensional plane. The beast is smart, and he hidden the princess snugly. He marked two coordinates of an equilateral triangle in the maze. The two marked coordinates are A(x1,y1) and B(x2,y2). The third coordinate C(x3,y3) is the maze’s exit. If the prince can find out the exit, he can save the princess. After the prince comes into the maze, he finds out the A(x1,y1) and B(x2,y2), but he doesn’t know where the C(x3,y3) is. The prince need your help. Can you calculate the C(x3,y3) and tell him?

输入

    The first line is an integer T(1 <= T <= 100) which is the number of test cases. T test cases follow. Each test case contains two coordinates A(x1,y1) and B(x2,y2), described by four floating-point numbers x1, y1, x2, y2 ( |x1|, |y1|, |x2|, |y2| <= 1000.0).
    Please notice that A(x1,y1) and B(x2,y2) and C(x3,y3) are in an anticlockwise direction from the equilateral triangle. And coordinates A(x1,y1) and B(x2,y2) are given by anticlockwise.

输出

    For each test case, you should output the coordinate of C(x3,y3), the result should be rounded to 2 decimal places in a line.

示例输入

4
-100.00 0.00 0.00 0.00
0.00 0.00 0.00 100.00
0.00 0.00 100.00 100.00
1.00 0.00 1.866 0.50

示例输出

(-50.00,86.60)
(-86.60,50.00)
(-36.60,136.60)
(1.00,1.00)

提示

 

来源

2013年山东省第四届ACM大学生程序设计竞赛

示例程序

 

分析:

 

已知等边三角形的两个按逆时针给出的两个顶点,求第三个点。

 

官方代码:

 

技术分享
 1 #include <stdio.h>
 2 #include <math.h>
 3 const double pi = acos(-1.0);
 4 int main()
 5 {
 6     int t;
 7     double x1,x2,x3,y1,y2,y3,l,at;
 8     scanf("%d",&t);
 9     while(t--)
10     {
11         scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
12         at = atan2(y2-y1,x2-x1);
13         printf("%lf\n",(y2-y1)/(x2-x1));
14         printf("%lf\n",at);
15         l = sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
16         x3 = x1+l*cos(at+pi/3.0);
17         y3 = y1+l*sin(at+pi/3.0);
18         printf("(%.2lf,%.2lf)\n",x3,y3);
19     }
20 
21     return 0;
22 }
View Code

 

AC代码:

 

 

技术分享
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cmath>
 4 using namespace std;
 5 #define D double
 6 #define PI acos(-1.0)
 7 D x3,y3;
 8 int d1, d2;
 9 D Length(D x1,D y1,D x2,D y2 )
10 {
11     return sqrt((y2-y1)*(y2-y1) + (x2-x1)*(x2-x1));
12 }
13 void Solve(D x1, D y1, D x2,D y2)
14 {
15     D Radian = atan((y2 - y1)/(x2 - x1));
16     D Angle = Radian * 180.0 / PI;
17     if (x1 > x2)
18         Angle += 180.0;
19     Radian += PI/3.0;
20     Angle += 60.0;
21      if (Angle <= 90 || Angle >= 270)
22          d1 = 1;
23     else
24         d1 = -1;
25      if (Angle >= 0 && Angle <= 180)
26          d2 = 1;
27     else
28         d2 = -1;
29     D dis = Length(x1,y1,x2,y2);
30     x3 = x1 + d1 * dis * fabs(cos(Radian));
31     y3 = y1 + d2 * dis * fabs(sin(Radian));
32 }
33 int main()
34 {
35     int T;
36     D x1, y1, x2, y2;
37     scanf ("%d", &T);
38     while (T --)
39     {
40         scanf ("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
41         Solve(x1, y1, x2, y2);
42         printf ("(%.2lf,%.2lf)\n", x3, y3);
43     }
44 
45     return 0;
46 }
View Code

 

sdutoj Rescue The Princess

原文:http://www.cnblogs.com/jeff-wgc/p/4464134.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!