首页 > 其他 > 详细

丘成桐大学生数学竞赛2012年分析与方程团体赛试题参考解答

时间:2014-03-15 06:31:33      阅读:650      评论:0      收藏:0      [点我收藏+]

S.-T.YauCollege Student Mathematics Contests 2012

 

Analysis and Differential Equations Team

 

Please solve 55bubuko.com,布布扣 out of the following 66bubuko.com,布布扣 problems.

 

 

1. Let A=[a_{ij}]A=[abubuko.com,布布扣ijbubuko.com,布布扣]bubuko.com,布布扣 be a real symmetric n\times nn×nbubuko.com,布布扣 matrix. Define f:\bbR^n\to\bbRf:Rbubuko.com,布布扣nbubuko.com,布布扣Rbubuko.com,布布扣 by \bex f(x_1,\cdots,x_n)=\exp\sex{-\frac{1}{2}\sum_{i,j=1}^n a_{ij}x_ix_j}. \eex

f(xbubuko.com,布布扣1bubuko.com,布布扣,?,xbubuko.com,布布扣nbubuko.com,布布扣)=exp?bubuko.com,布布扣?bubuko.com,布布扣?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣i,j=1bubuko.com,布布扣nbubuko.com,布布扣abubuko.com,布布扣ijbubuko.com,布布扣xbubuko.com,布布扣ibubuko.com,布布扣xbubuko.com,布布扣jbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Prove that f\in L^1(\bbR^n)fLbubuko.com,布布扣1bubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 if and only if the matrix AAbubuko.com,布布扣 is positive definite. Compute \bex \int_{\bbR^n} \exp\sex{-\frac{1}{2}\sum_{i,j=1}^n a_{ij}x_ix_j+\sum_{i=1}^n b_ix_i}\rd x \eex
bubuko.com,布布扣Rbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣exp?bubuko.com,布布扣?bubuko.com,布布扣?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣i,j=1bubuko.com,布布扣nbubuko.com,布布扣abubuko.com,布布扣ijbubuko.com,布布扣xbubuko.com,布布扣ibubuko.com,布布扣xbubuko.com,布布扣jbubuko.com,布布扣+bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣bbubuko.com,布布扣ibubuko.com,布布扣xbubuko.com,布布扣ibubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣dxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
when AAbubuko.com,布布扣 is positive definite.

Solution: Since AAbubuko.com,布布扣 is real, symmetric, we may find an orthogonal matrix PPbubuko.com,布布扣 such that \bex P^tAP=\diag(\lm_1,\cdots,\lm_n), \eex

Pbubuko.com,布布扣tbubuko.com,布布扣AP=diag(λbubuko.com,布布扣1bubuko.com,布布扣,?,λbubuko.com,布布扣nbubuko.com,布布扣),bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
with \lm_iλbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣 being the eigenvalues of AAbubuko.com,布布扣 . Then \beex \bea \int_{\bbR^n} f(x)\rd x &=\int_{\bbR^n}\exp\sex{-\frac{1}{2}x^tAx}\rd x\\ &=\int_{\bbR^n}\exp\sex{-\frac{1}{2}\sum_{i=1}^n \lm_iy_i^2}\rd y\quad(x=Py)\\ &=\int_{\bbR^n}\prod_{i=1}^n \exp\sex{-\frac{1}{2}\lm_iy_i^2}\rd y\\ &=\prod_{i=1}^n \int_{\bbR} \exp\sex{-\frac{1}{2}\lm_iy_i^2}\rd y_i \eea \eeex
is finite if and only if all \lm_i>0 , which is equivalent to that A is positive definite. If A is positive definite, then \beex \bea I&\equiv \int_{\bbR^n} \exp\sex{-\frac{1}{2}\sum_{i,j=1}^n a_{ij}x_ix_j+\sum_{i=1}^n b_ix_i}\rd x\\ &=\int_{\bbR^n} \exp\sex{ -\frac{1}{2}\sum_{i=1}^n \lm_i^2y_i^2 +\sum_{i=1}^n c_iy_i }\rd y\quad\sex{x=Py,\ b^tP=c^t}\\ &=\prod_{i=1}^n \int_{\bbR} \exp\sex{-\frac{1}{2}\lm_iy_i^2+c_iy_i}\rd y_i\\ &=\prod_{i=1}^n \int_{\bbR} \exp\sez{-\frac{1}{2}\lm_i \sex{y_i-\frac{c_i}{\lm_i}}^2+\frac{c_i^2}{2\lm_i}}\rd y_i\\ &=\exp\sex{\frac{1}{2}\sum_{i=1}^n\frac{c_i^2}{\lm_i}} \cdot \prod_{i=1}^n \exp\sex{-\frac{1}{2}\lm_iy_i^2}\rd y_i. \eea \eeex
Due to the fact that \beex \bea P^tAP=\diag(\lm_1,\cdots,\lm_n) &\ra A=P\,\diag(\lm_1,\cdots,\lm_n)P^{-1}\\ &\ra A^{-1}=P\,\diag\sex{\frac{1}{\lm_1},\cdots,\frac{1}{\lm_n}}P^{-1}\\ &\ra \tilde a_{jk}=\sum_i p_{ji}\frac{1}{\lm_i}p_{ki},\\ c^t=b^tP&\ra c=P^tb\\ &\ra c_i=\sum_j p_{ji}b_j\\ &\ra c_i^2=\sum_{j,k}p_{ji}b_jp_{ki}b_k\\ &\ra \sum_i\frac{c_i^2}{\lm_i} =\sum_{jk}b_kb_j\sum_ip_{ji}\frac{1}{\lm_i}p_{ki}\\ &\quad\ =\sum_{jk}b_j\tilde a_{jk}b_k =b^tA^{-1}b, \eea \eeex
we have \bex I=\exp\sex{\frac{1}{2}b^tA^{-1}b}\cdot \prod_{i=1}^n \frac{\sqrt{2\pi}}{\sqrt{\lm_i}} =\frac{(2\pi)^\frac{n}{n}}{|A|^\frac{1}{2}} e^{\frac{1}{2}b^tA^{-1}b}. \eex

 

 

 

2. Let V be a simply connected region in the complex plane and V\neq \bbC . Let a,b be two distinct points in V . Let \phi_1,\phi_2 be two one-to-one holomorphic maps of V onto itself. If \bex \phi_1(a)=\phi_2(a),\mbox{ and } \phi_1(b)=\phi_2(b), \eex

show that \bex \phi_1(z)=\phi_2(z),\quad \forall\ z\in V. \eex

Solution: By the Riemann mapping theorem, we may assume without loss of generality that \bex V=\lap=\sed{z\in\bbC;\ |z|<1}. \eex

And hence \phi_1,\phi_2\in \Aut(\lap) . Consequently, \phi\equiv \phi_2^{-1}\circ \phi_1\in \Aut(\lap) has two fixed points a,b . Let \varphi_a(\zeta)=\cfrac{-\zeta+a}{1-\bar a\zeta} , then \varphi_a\circ \phi\circ \varphi_a have two fixed points 0 and \cfrac{-b+a}{1-\bar ab} . By the Schwarz Lemma, we have \beex \bea \varphi_a\circ \phi\circ \varphi_a=\id\ra \phi=\id \ra \phi_1=\phi_2. \eea \eeex

 

 

 

3. In the unit interval [0,1] consider a subset \bex E=\sed{x;\ \mbox{ in the decimal expansion of }x\mbox{ there is no }4}, \eex

show that E is measurable and calculate its measure.

Solution: Just as the construction of the Cantor set, E is measurable and complete. Moreover, \bex m\,E=1-\sum_{i=1}^\infty\frac{9^{i-1}}{10^i}=0. \eex

 

 

 

4. Let 1<p<\infty L^p([0,1],\rd m) be the completion of C[0,1] with the norm: \bex \sen{f}_p=\sex{\int_0^1 |f(x)|^p\rd m}^\frac{1}{p}, \eex

where \rd m is the Lebesgue measure. Show that \bex \lim_{\lm\to\infty}\lm^p\cdot m\sex{x;\ |f(x)|>\lm}=0. \eex

Solution: Let \bex E_\lm=\sed{x;\ |f(x)|>\lm}. \eex

Then \bex \lm^p\cdot m\, E_\lm\leq \int_{E_\lm}|f(x)|^p\rd m \leq \int_0^1 |f(x)|^p\rd m \eex
implies that \bee\label{4:eq} mE_\lm\to0\quad(\lm\to\infty). \eee
By the absolute continuity, for any \ve>0 , there exists a \delta>0 such that for any measurable A\subset [0,1] with m\,A<\delta , we have \bex \int_A |f(x)|^p\rd m<\ve. \eex
For this \delta>0 , we have by \eqref{4:eq} that \bex \exists\ \vLa>0,\st \lm\geq \vLa\ra m\, E_\lm<\delta. \eex
Cosequently, when \lm\geq \vLa , \bex \lm\cdot m\, E_\lm\leq \int_{E_\lm}|f(x)|^p\rd m<\ve. \eex
This completes the proof of the problem.

 

 

 

5. let \mathfrak{F}=\sed{e_\nu} , \nu=1,2,\cdots,n or \nu=1,2,\cdots is an orthonomal basis in an inner product space H . Let E be the closed linear subspace spanned by \mathfrak{F} . For any x\in H show that the following are equivalent:

(1) x\in E ;

(2) \dps{\sen{x}^2=\sum_\nu |\sef{x,e_\nu}|^2} ;

(3) \dps{x=\sum_\nu (x,e_\nu)e_\nu} . let H=L^2[0,2\pi] with the inner product \bex \sef{f,g}=\frac{1}{\pi}\in_0^{2\pi}f(x)g(x)\rd x, \eex

\bex \mathfrak{F}=\sed{\frac{1}{2},\cos x,\sin x,\cdots,\cos nx,\sin nx,\cdots} \eex
be an orthonormal basis. Show that the closed linear subspace E spaned by \mathfrak{F} is H .

Solution: This is the standard result in Functional Analysis.

 

 

 

6. Let \scrH=L^2[0,1] relative to the Lebesgue measure and define \bex (Kf)(s)=\int_0^s f(t)\rd t \eex

for each f in \scrH . Show that K is a compact operator without eigenvalues.

Solution:

(1) Suppose that \sed{f_n} is bounded in L^2[0,1] (with bound M ). By reflexivity, \bex \exists\ \sed{n_k},\st f_{n_k}\rhu f. \eex

Thus by the definition of weak compactness, \bex (Kf_{n_k})(s) =\int_0^1 \chi_{[0,s]}(t)f_{n_k}(t)\rd t \to \int_0^1 \chi_{[0,s]}(t)f(t)\rd t=(Kf)(s),\quad 0\leq s\leq 1. \eex
Consequently, by Lebesgue‘s dominated convergence theorem and the fact that \beex \bea |Kf_{n_k}(s)-Kf(s)|^2 &=\sev{\int_0^s [f_{n_k}(t)-f(t)]\rd t}^2\\ &\leq s\cdot \int_0^s |f_{n_k}(t)-f(t)|^2\rd t\\ &\leq 2\int_0^1 [|f_{n_k}(t)|^2+|f(t)|^2]\rd t\\ &\leq 4M\\ &\in L^1[0,1], \eea \eeex
we have \bex \sen{Kf_{n_k}-Kf}_{L^2}\to 0\quad(k\to\infty). \eex

(2) Suppose \lm is an eigenvalue of K with the corresponding eigen-function 0\neq f\in L^2[0,1] . Then \bex Kf=\lm f\ra \int_0^s f(t)\rd t=\lm f(s),\quad 0\leq s\leq 1. \eex

Consequently, \lm\neq 0 (otherwise, \dps{\int_0^s f(t)\rd t=0,\ \forall\ s;\ f\equiv 0} ), and \bex \sedd{\ba{ll} f‘(s)&=\cfrac{1}{\lm}f(s),\\ f(0)&=0. \ea} \eex
This implies that f\equiv 0 , which is a contradiction. 

丘成桐大学生数学竞赛2012年分析与方程团体赛试题参考解答,布布扣,bubuko.com

丘成桐大学生数学竞赛2012年分析与方程团体赛试题参考解答

原文:http://www.cnblogs.com/zhangzujin/p/3601172.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!