S.-T.YauCollege
Student Mathematics Contests 2012
Analysis
and Differential Equations Team
Please solve 55
out of the following 66
problems.
1. Let A=[a_{ij}]A=[a
ij
]
be a real symmetric n\times nn×n
matrix. Define f:\bbR^n\to\bbRf:R
n
→R
by \bex
f(x_1,\cdots,x_n)=\exp\sex{-\frac{1}{2}\sum_{i,j=1}^n a_{ij}x_ix_j}. \eex
f(x
1
,?,x
n
)=exp?
?
?1
2
∑
i,j=1
n
a
ij
x
i
x
j
?
?
.


Prove that f\in L^1(\bbR^n)f∈L
1
(R
n
)
if and only if the matrix AA
is positive definite. Compute \bex \int_{\bbR^n}
\exp\sex{-\frac{1}{2}\sum_{i,j=1}^n a_{ij}x_ix_j+\sum_{i=1}^n b_ix_i}\rd x
\eex
∫
R
n
exp?
?
?1
2
∑
i,j=1
n
a
ij
x
i
x
j
+∑
i=1
n
b
i
x
i
?
?
dx


when AA
is positive definite.
Solution: Since AA
is real, symmetric, we may find an orthogonal matrix PP
such that \bex P^tAP=\diag(\lm_1,\cdots,\lm_n),
\eex
with \lm_iλ
i
being the eigenvalues of AA
. Then \beex \bea \int_{\bbR^n} f(x)\rd x
&=\int_{\bbR^n}\exp\sex{-\frac{1}{2}x^tAx}\rd x\\
&=\int_{\bbR^n}\exp\sex{-\frac{1}{2}\sum_{i=1}^n \lm_iy_i^2}\rd
y\quad(x=Py)\\ &=\int_{\bbR^n}\prod_{i=1}^n
\exp\sex{-\frac{1}{2}\lm_iy_i^2}\rd y\\ &=\prod_{i=1}^n \int_{\bbR}
\exp\sex{-\frac{1}{2}\lm_iy_i^2}\rd y_i \eea \eeex
is finite if and only if all \lm_i>0
, which is equivalent to that A
is positive definite. If A
is positive definite, then \beex \bea
I&\equiv \int_{\bbR^n} \exp\sex{-\frac{1}{2}\sum_{i,j=1}^n
a_{ij}x_ix_j+\sum_{i=1}^n b_ix_i}\rd x\\ &=\int_{\bbR^n} \exp\sex{
-\frac{1}{2}\sum_{i=1}^n \lm_i^2y_i^2 +\sum_{i=1}^n c_iy_i }\rd
y\quad\sex{x=Py,\ b^tP=c^t}\\ &=\prod_{i=1}^n \int_{\bbR}
\exp\sex{-\frac{1}{2}\lm_iy_i^2+c_iy_i}\rd y_i\\ &=\prod_{i=1}^n \int_{\bbR}
\exp\sez{-\frac{1}{2}\lm_i
\sex{y_i-\frac{c_i}{\lm_i}}^2+\frac{c_i^2}{2\lm_i}}\rd y_i\\
&=\exp\sex{\frac{1}{2}\sum_{i=1}^n\frac{c_i^2}{\lm_i}} \cdot \prod_{i=1}^n
\exp\sex{-\frac{1}{2}\lm_iy_i^2}\rd y_i. \eea \eeex
Due to the fact that \beex \bea
P^tAP=\diag(\lm_1,\cdots,\lm_n) &\ra A=P\,\diag(\lm_1,\cdots,\lm_n)P^{-1}\\
&\ra A^{-1}=P\,\diag\sex{\frac{1}{\lm_1},\cdots,\frac{1}{\lm_n}}P^{-1}\\
&\ra \tilde a_{jk}=\sum_i p_{ji}\frac{1}{\lm_i}p_{ki},\\ c^t=b^tP&\ra
c=P^tb\\ &\ra c_i=\sum_j p_{ji}b_j\\ &\ra
c_i^2=\sum_{j,k}p_{ji}b_jp_{ki}b_k\\ &\ra \sum_i\frac{c_i^2}{\lm_i}
=\sum_{jk}b_kb_j\sum_ip_{ji}\frac{1}{\lm_i}p_{ki}\\ &\quad\
=\sum_{jk}b_j\tilde a_{jk}b_k =b^tA^{-1}b, \eea \eeex
we have \bex
I=\exp\sex{\frac{1}{2}b^tA^{-1}b}\cdot \prod_{i=1}^n
\frac{\sqrt{2\pi}}{\sqrt{\lm_i}} =\frac{(2\pi)^\frac{n}{n}}{|A|^\frac{1}{2}}
e^{\frac{1}{2}b^tA^{-1}b}. \eex
2. Let V
be a simply connected region in the complex plane and V\neq
\bbC
. Let a,b
be two distinct points in V
. Let \phi_1,\phi_2
be two one-to-one holomorphic maps of V
onto itself. If \bex \phi_1(a)=\phi_2(a),\mbox{
and } \phi_1(b)=\phi_2(b), \eex
show that \bex \phi_1(z)=\phi_2(z),\quad \forall\
z\in V. \eex
Solution: By the Riemann mapping theorem, we
may assume without loss of generality that \bex
V=\lap=\sed{z\in\bbC;\ |z|<1}. \eex
And hence \phi_1,\phi_2\in \Aut(\lap)
. Consequently, \phi\equiv \phi_2^{-1}\circ
\phi_1\in \Aut(\lap)
has two fixed points a,b
. Let \varphi_a(\zeta)=\cfrac{-\zeta+a}{1-\bar
a\zeta}
, then \varphi_a\circ \phi\circ
\varphi_a
have two fixed points 0
and \cfrac{-b+a}{1-\bar ab}
. By the Schwarz Lemma, we have \beex \bea
\varphi_a\circ \phi\circ \varphi_a=\id\ra \phi=\id \ra \phi_1=\phi_2. \eea
\eeex
3. In the unit interval
[0,1]
consider a subset \bex E=\sed{x;\ \mbox{ in the
decimal expansion of }x\mbox{ there is no }4}, \eex
show that E
is measurable and calculate its measure.
Solution: Just as the
construction of the Cantor set, E
is measurable and complete. Moreover, \bex
m\,E=1-\sum_{i=1}^\infty\frac{9^{i-1}}{10^i}=0. \eex
4. Let 1<p<\infty
L^p([0,1],\rd m)
be the completion of C[0,1]
with the norm: \bex \sen{f}_p=\sex{\int_0^1
|f(x)|^p\rd m}^\frac{1}{p}, \eex
where \rd m
is the Lebesgue measure. Show that \bex
\lim_{\lm\to\infty}\lm^p\cdot m\sex{x;\ |f(x)|>\lm}=0. \eex
Solution: Let \bex E_\lm=\sed{x;\ |f(x)|>\lm}. \eex
Then \bex \lm^p\cdot m\, E_\lm\leq
\int_{E_\lm}|f(x)|^p\rd m \leq \int_0^1 |f(x)|^p\rd m \eex
implies that \bee\label{4:eq}
mE_\lm\to0\quad(\lm\to\infty). \eee
By the absolute continuity, for any \ve>0
, there exists a \delta>0
such that for any measurable A\subset
[0,1]
with m\,A<\delta
, we have \bex \int_A |f(x)|^p\rd m<\ve.
\eex
For this \delta>0
, we have by \eqref{4:eq}
that \bex \exists\ \vLa>0,\st \lm\geq \vLa\ra
m\, E_\lm<\delta. \eex
Cosequently, when \lm\geq \vLa
, \bex \lm\cdot m\, E_\lm\leq
\int_{E_\lm}|f(x)|^p\rd m<\ve. \eex
This completes the proof of the problem.
5. let \mathfrak{F}=\sed{e_\nu}
, \nu=1,2,\cdots,n
or \nu=1,2,\cdots
is an orthonomal basis in an inner product space H
. Let E
be the closed linear subspace spanned by \mathfrak{F}
. For any x\in H
show that the following are equivalent:
(1) x\in
E
;
(2) \dps{\sen{x}^2=\sum_\nu
|\sef{x,e_\nu}|^2}
;
(3) \dps{x=\sum_\nu
(x,e_\nu)e_\nu}
. let H=L^2[0,2\pi]
with the inner product \bex
\sef{f,g}=\frac{1}{\pi}\in_0^{2\pi}f(x)g(x)\rd x, \eex
\bex \mathfrak{F}=\sed{\frac{1}{2},\cos x,\sin
x,\cdots,\cos nx,\sin nx,\cdots} \eex
be an orthonormal basis. Show that the closed linear subspace E
spaned by \mathfrak{F}
is H
.
Solution: This is the standard result in
Functional Analysis.
6. Let \scrH=L^2[0,1]
relative to the Lebesgue measure and define \bex
(Kf)(s)=\int_0^s f(t)\rd t \eex
for each f
in \scrH
. Show that K
is a compact operator without eigenvalues.
Solution:
(1) Suppose that \sed{f_n}
is bounded in L^2[0,1]
(with bound M
). By reflexivity, \bex \exists\ \sed{n_k},\st
f_{n_k}\rhu f. \eex
Thus by the definition of weak compactness, \bex
(Kf_{n_k})(s) =\int_0^1 \chi_{[0,s]}(t)f_{n_k}(t)\rd t \to \int_0^1
\chi_{[0,s]}(t)f(t)\rd t=(Kf)(s),\quad 0\leq s\leq 1. \eex
Consequently, by Lebesgue‘s dominated convergence theorem and the fact that
\beex \bea |Kf_{n_k}(s)-Kf(s)|^2
&=\sev{\int_0^s [f_{n_k}(t)-f(t)]\rd t}^2\\ &\leq s\cdot \int_0^s
|f_{n_k}(t)-f(t)|^2\rd t\\ &\leq 2\int_0^1 [|f_{n_k}(t)|^2+|f(t)|^2]\rd t\\
&\leq 4M\\ &\in L^1[0,1], \eea \eeex
we have \bex \sen{Kf_{n_k}-Kf}_{L^2}\to
0\quad(k\to\infty). \eex
(2) Suppose \lm
is an eigenvalue of K
with the corresponding eigen-function 0\neq f\in
L^2[0,1]
. Then \bex Kf=\lm f\ra \int_0^s f(t)\rd t=\lm
f(s),\quad 0\leq s\leq 1. \eex
Consequently, \lm\neq 0
(otherwise, \dps{\int_0^s f(t)\rd t=0,\ \forall\
s;\ f\equiv 0}
), and \bex \sedd{\ba{ll}
f‘(s)&=\cfrac{1}{\lm}f(s),\\ f(0)&=0. \ea} \eex
This implies that f\equiv 0
, which is a contradiction.
丘成桐大学生数学竞赛2012年分析与方程团体赛试题参考解答,布布扣,bubuko.com
丘成桐大学生数学竞赛2012年分析与方程团体赛试题参考解答
原文:http://www.cnblogs.com/zhangzujin/p/3601172.html