<span style="font-size:18px;">/*
* 代码mahout实现训练数据和评分
* 这里输出测试这个推荐程序的评分
* 评分越低意味着估计值与实际实际偏好值得差别越小
* 0.0为完美的估计
* */
package byuser;
import java.io.File;
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.eval.RecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.eval.AverageAbsoluteDifferenceRecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;
import org.apache.mahout.common.RandomUtils;
public class RecommenderEvaluatorStudy {
//无参构造
public RecommenderEvaluatorStudy(){
}
public static void main(String[] args) {
try{
//每次生成的随机数都相同
//因此随机生成可以重复的结果
//这里是为了测试,实际代码中请勿使用
RandomUtils.useTestSeed();
//构建推荐的数据模型
DataModel model = new FileDataModel(new File("E:\\mahout项目\\examples\\intro.csv"));
RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
RecommenderBuilder builder = new RecommenderBuilder(){
@Override
public Recommender buildRecommender(DataModel model) throws TasteException{
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);
return new GenericUserBasedRecommender(model, neighborhood, similarity);
}
};
//这里的数据意思是训练70%,测试30%的数据
//这里的数据如果显示出现了NAN,就表示计算数据出现了问题NAN: not a number
//你只需要修改一下参数,我这里改成了0.9
double score = evaluator.evaluate(builder, null, model, 0.9, 1.0);
System.out.println("分值为:" + score);
}catch(Exception e){
e.printStackTrace();
}
}
}
</span>
原图:
这里为NAN: Not A Number的意思
修改参数后的图片:
RecommenderEvaluator实现对推荐程序的评分测试程序
原文:http://blog.csdn.net/u012965373/article/details/45481443