Given n, how many structurally unique BST‘s (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST‘s.
1 3 3 2 1
\ / / / \ 3 2 1 1 3 2
/ / \ 2 1 2 3
int numTrees(int n) {
if (n<=0) return 0;
if (n==1) return 1;
if (n==2) return 2;
vector<int>a(n+1,0);
a[0]=1;
a[1]=1;
a[2]=2;
for (int i=3;i<=n;i++)
{
int temp=0;
for (int j=0;j<i;j++)
{
temp+=a[j]*a[i-j-1];
}
a[i]=temp;
}
return a[n];
}方法二:int numTrees1(int n)
{
if (n<=0) return 0;
if (n==1) return 1;
if (n==2) return 2;
unsigned long c1=fac(2*n);
unsigned long c=fac(n);
int res=c1/(c*c*(n+1));
return res;
}
unsigned long fac(int n)
{
vector<unsigned long> a(n+1,1);
a[0]=1;
a[1]=1;
for (int i=2;i<=n;i++)
{
a[i]=i*a[i-1];
}
return a[n];
}#include <iostream>
#include <vector>
using namespace std;
int numTrees(int n);
int numTrees1(int n);
unsigned long fac(int n);
void main()
{
int n=11;
cout<<numTrees(n)<<endl;
for (int i=1;i<10;i++)
{
cout<<numTrees1(i)<<endl;//从1到9输出第二种方法的结果
}
}
int numTrees(int n) {
if (n<=0) return 0;
if (n==1) return 1;
if (n==2) return 2;
vector<int>a(n+1,0);
a[0]=1;
a[1]=1;
a[2]=2;
for (int i=3;i<=n;i++)
{
int temp=0;
for (int j=0;j<i;j++)
{
temp+=a[j]*a[i-j-1];
}
a[i]=temp;
}
return a[n];
}
int numTrees1(int n)
{
if (n<=0) return 0;
if (n==1) return 1;
if (n==2) return 2;
unsigned long c1=fac(2*n);
unsigned long c=fac(n);
int res=c1/(c*c*(n+1));
return res;
}
unsigned long fac(int n)
{
vector<unsigned long> a(n+1,1);
a[0]=1;
a[1]=1;
for (int i=2;i<=n;i++)
{
a[i]=i*a[i-1];
}
return a[n];
}结果如下:leetcode-Unique Binary Search Trees:
原文:http://blog.csdn.net/sinat_24520925/article/details/45562273