Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
Have you been asked this question in an interview?
class Solution { public: int sum; int *board; bool isok(int k) //check whether the kth Queen can be put down. { for(int i = 1; i < k; i++) { if(board[i] == board[k] || abs(i-k) == abs(board[i] - board[k])) return false; } return true; } void totalN(int n, int k) { if(k > n) sum++; else{ for(int i = 1; i <= n; i++) { board[k] = i; if(isok(k)) totalN(n, k+1); } } } int totalNQueens(int n) { board = new int[n+1]; sum = 0; totalN(n, 1); int res = sum; delete []board; return res; } };
【LeetCode】N-Queens II N皇后问题 回溯法,布布扣,bubuko.com
【LeetCode】N-Queens II N皇后问题 回溯法
原文:http://blog.csdn.net/xiaozhuaixifu/article/details/21296395