首页 > 其他 > 详细

几种常用树介绍

时间:2014-03-16 22:51:36      阅读:787      评论:0      收藏:0      [点我收藏+]

Binary Search Tree(二叉查找树、二叉排序树、二叉搜索树)

指一棵空树或者具有下列性质的二叉树

  1. 1)若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  2. 2)任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  3. 3)任意节点的左、右子树也分别为二叉查找树。
  4. 4)没有键值相等的节点(no duplicate nodes)。

Balanced Binary Search Tree(平衡二叉查找树、AVL树)

  1. 在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。
  2. 平衡二叉树是一个重要的数据结构,它有很均衡的插入、删除以及查询性能(时间复杂度都是O(logn))。Linux2.4以前的内核中,虚拟内存管理中用的容器就是AVL Tree。AVL Tree对平衡的要求是比较严格的,它要求左右子数之间的长度差不能大于1。

红黑树

  1. 红黑树是每个节点都带有颜色属性的二叉查找树,颜色为红色黑色。在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:

    性质1. 节点是红色或黑色。

    性质2. 根是黑色。

    性质3. 所有叶子都是黑色(叶子是NIL节点)。

    性质4. 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)

    性质5. 从任一节点到其每个叶子的所有简单路径都包含相同数目的黑色节点。

    二叉查找树但若是一棵具有n个结点的线性链,则此些操作最坏情况运行时间为O(n),但是红黑树,能保证在最坏情况下,基本的动态几何操作的时间均为O(lgn)。

    从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。

    详细介绍可以参考:http://blog.csdn.net/v_JULY_v/article/details/6105630等的详细介绍。

    平衡二叉树和红黑树比较:

    AVL是严格平衡树,因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多;

    红黑是用非严格的平衡来换取增删节点时候旋转次数的降低;

    所以简单说,如果你的应用中,搜索的次数远远大于插入和删除,那么选择AVL,如果搜索,插入删除次数几乎差不多,或者插入更多,应该选择RB

B树

     是一个节点可以拥有多于2个子节点的二叉查找树

  1. bubuko.com,布布扣

    就是大规模数据存储中,实现索引查询这样一个实际背景下,树节点存储的元素数量是有限的(如果元素数量非常多的话,查找就退化成节点内部的线性查找了),这样导致二叉查找树结构由于树的深度过大而造成磁盘I/O读写过于频繁,进而导致查询效率低下(为什么会出现这种情况,待会在外部存储器-磁盘中有所解释),那么如何减少树的深度(当然是不能减少查询的数据量),一个基本的想法就是:采用多叉树结构(由于树节点元素数量是有限的,自然该节点的子树数量也就是有限的)。

    在大规模数据存储方面,大量数据存储在外存磁盘中,而在外存磁盘中读取/写入块(block)中某数据时,首先需要定位到磁盘中的某块,如何有效地查找磁盘中的数据,需要一种合理高效的外存数据结构,就是B-tree结构。

    B树与红黑树最大的不同在于,B树的结点可以有许多子女,从几个到几千个。那为什么又说B树与红黑树很相似呢?因为与红黑树一样,一棵含n个结点的B树的高度也为O(lgn),但可能比一棵红黑树的高度小许多,应为它的分支因子比较大。所以,B树可以在O(logn)时间内,实现各种如插入(insert),删除(delete)等动态集合操作。

B+树

      B+-tree:是应文件系统所需而产生的一种B-tree的变形树。

     一棵m阶的B+树和m阶的B树的异同点在于:

  1.  有n棵子树的结点中含有n-1 个关键字; (与B 树n棵子树有n-1个关键字 保持一致,参照:http://en.wikipedia.org/wiki/B%2B_tree#Overview,而下面B+树的图可能有问题,请读者注意)

          2.所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大的顺序链接。 (而B 树的叶子节点并没有包括全部需要查找的信息)

          3.所有的非终端结点可以看成是索引部分,结点中仅含有其子树根结点中最大(或最小)关键字。 (而B 树的非终节点也包含需要查找的有效信息)

    a) 为什么说B+-tree比B 树更适合实际应用中操作系统的文件索引和数据库索引?

    1) B+-tree的磁盘读写代价更低

    B+-tree的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。

    举个例子,假设磁盘中的一个盘块容纳16bytes,而一个关键字2bytes,一个关键字具体信息指针2bytes。一棵9阶B-tree(一个结点最多8个关键字)的内部结点需要2个盘快。而B+ 树内部结点只需要1个盘快。当需要把内部结点读入内存中的时候,B 树就比B+ 树多一次盘块查找时间(在磁盘中就是盘片旋转的时间)。

    bubuko.com,布布扣

    2) B+-tree的查询效率更加稳定

    由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

    数据库索引采用B+树的主要原因是 B树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。正是为了解决这个问题,B+树应运而生。B+树只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作(或者说效率太低)。

B*-tree

  1. B*-tree是B+-tree的变体,在B+树的基础上(所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针),B*树中非根和非叶子结点再增加指向兄弟的指针;B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2)。给出了一个简单实例,如下图所示:

    B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针。

    B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针。

    所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

    现在一般主流的数据库索引一般都是用的B/B+树系列,包括MySQL及NoSQL中的MongoDB。

LSM-tree(Log Structured merge -tree)

           详细参考:http://duanple.blog.163.com/blog/static/7097176720120391321283/

几种常用树介绍,布布扣,bubuko.com

几种常用树介绍

原文:http://www.cnblogs.com/jacksu-tencent/p/3603660.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!