Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
基本思路:
动态规划。
题目示例虽然是从上到下。但如果从下到上递推的话,写起来会更方便一些。
到达每个元素路径为,从下一行的正下方,或者下一行正下文的后一个元素。
挑取这两条路径中最小的,再加上本节点元素。即为从下往上到达本节点的最短路径。
重复上面的操作,走到顶点。
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { if (triangle.empty()) return 0; vector<int> dp(triangle.back()); for (int i=triangle.size()-2; i>=0; i--) { for (int j=0; j<=i; j++) { dp[j] = min(dp[j], dp[j+1]) + triangle[i][j]; } } return dp[0]; } };
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { if (triangle.empty()) return 0; for (int i=triangle.size()-2; i>=0; i--) { for (int j=0; j<=i; j++) { triangle[i][j] += min(triangle[i+1][j], triangle[i+1][j+1]); } } return triangle[0][0]; } };
原文:http://blog.csdn.net/elton_xiao/article/details/45789715