1.矩阵快速幂,用倍增来加速(O(n^3*logk))
2.矩阵求解递推关系第n项(n很大)可以构造矩阵,用矩阵快速幂迅速求出。
3.给定起点和终点求从起点到终点恰好进过k步的方案数可以直接对可达矩阵相乘k次得到结果
4.矩阵乘法的顺序对时间影响比较大(提高Cache命中率),kij最快而且还可以进行稀疏矩阵加速(当a[i][k]为0时没必要进行运算)。
因为最近在搞矩阵,所以准备写一个矩阵模板类。结果遇到不少坑,毕竟平时没怎么使用动态分配内存,只好先用静态数组水过,搞完之后调试很久才写出矩阵的动态版本,主要是开始写模板矩阵的时候没有创建复制构造和重载=,导致类的浅复制,出现很多bug(值很随机)。最后查了好多遍才想到是那里的问题,不过搞完之后对这方面了解更多点了,嘿嘿!
题目:
1.稀疏矩阵乘法
#include <iostream>
#include <cstdio>
#include <cstdlib>
typedef long long ll;
#define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it)
using namespace std;
int mod = 3;
const int buf_len = 4096;
char buf[buf_len], *bufb(buf), *bufe(buf + 1);
int E = 1;
#define readBuf() {     if (++ bufb == bufe)         bufe = (bufb = buf) + (E=fread(buf, 1, sizeof(buf), stdin));     if(!E)return 0; }
#define readInt(_y_) {     register int _s_(0);     do {         readBuf();     } while (!isdigit(*bufb));     do {         _s_ = (_s_<<1) + (_s_<<3) + *bufb - '0';         readBuf();     } while (isdigit(*bufb));     _y_ = _s_; }
template <typename T> struct Matrix
{
	T ** base;
	int row,colnum;
	Matrix(int n = 0,int m = 0):row(n),colnum(m) {
		base = new T * [n];
		for(int i = 0; i < n; i++)
			base[i] = new T [m];
	}
	Matrix (const Matrix<T> & A) {
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	Matrix operator + (const Matrix <T> &A)const{
		Matrix<T> res(row,colnum);
		for(int i = 0; i < row; i++) {
			for(int j = 0; j < colnum; j++) {
				res.base[i][j] = base[i][j] + A.base[i][j];
				if(mod)res.base[i][j] %= mod;
			}
		}
		return res;
	}
	void operator = (const Matrix<T> & A) {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	T * operator [] (const int & i) {
		return base[i];
	}
	void setv(const T & val) {
		for(int i = 0; i < row; i++)
			for(int j = 0; j < colnum; j++)
				base[i][j] = val;
	}
	Matrix ones(int n) const{
		Matrix<T> res(n,n);
		for(int i = 0; i < n; i++)
			for(int j = 0; j < n; j++)
				res.base[i][j] = (T)(i==j);
		return res;
	}
	Matrix operator * (const Matrix<T> & rhs) const {
		if(colnum != rhs.row) {
			cerr<<"worng size of two Matrix"<<endl;
			exit(-1);
		}
		Matrix<T> c(row,rhs.colnum);
		c.setv(T(0));
		for(int k = 0; k < colnum; k++) {
			for(int i = 0; i < row; i++) {
				T r = base[i][k];
				if(!r)continue;
				for(int j = 0; j < c.colnum; j++) {
					c[i][j] += r*rhs.base[k][j];
					if(mod)c[i][j] %= mod;
				}
			}
		}
		return c;
	}
	Matrix exp(int n) const{
		if(row!=colnum) {
			cerr<<"can't exp on different row and colnum"<<endl;
			exit(-1);
		}
		Matrix<T>res = ones(row),b(*this);
		while(n > 0) {
			if(n & 1)res = res * b;
			b = (b * b);
			n >>= 1;
		}
		return res;
	}
	void debug()const{
		for(int i = 0; i < row; i++) {
			for(int j = 0; j < colnum; j++)
				cout<<base[i][j]<<" \n"[j+1==colnum];
		}
	}
	~Matrix() {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
	}
};
int main(int argc, char const *argv[])
{
	while(1) {
		int n;readInt(n);
		Matrix<int> A(n,n),B(n,n);
		for(int i = 0; i < n; i++) {
			for(int j = 0; j < n; j++) {
				readInt(A[i][j]);
				A[i][j] %= 3;
			}
		}
		for(int i = 0; i < n; i++) {
			for(int j = 0; j < n; j++) {
				readInt(B[i][j]);
				B[i][j] %= 3;
			}
		}
		(A*B).debug();
	}
	return 0;
}#include <bits/stdc++.h>
typedef long long ll;
#define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it)
using namespace std;
const int maxn = 2e5 + 10;
ll mod = 0;
template <typename T> struct Matrix
{
	T ** base;
	int row,colnum;
	Matrix(int n = 0,int m = 0):row(n),colnum(m) {
		base = new T * [n];
		for(int i = 0; i < n; i++)
			base[i] = new T [m];
	}
	Matrix (const Matrix<T> & A) {
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	void operator = (const Matrix<T> & A) {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	T * operator [] (const int & i) {
		return base[i];
	}
	void setv(const T & val) {
		for(int i = 0; i < row; i++)
			for(int j = 0; j < colnum; j++)
				base[i][j] = val;
	}
	Matrix operator * (const Matrix<T> & rhs) const {
		if(colnum != rhs.row) {
			cerr<<"worng size of two Matrix"<<endl;
			exit(-1);
		}
		Matrix<T> c(row,rhs.colnum);
		c.setv(T(0));
		for(int k = 0; k < colnum; k++) {
			for(int i = 0; i < row; i++) {
				T r = base[i][k];
				for(int j = 0; j < c.colnum; j++) {
					c[i][j] += r*rhs.base[k][j];
					if(mod)c[i][j] %= mod;
				}
			}
		}
		return c;
	}
	Matrix exp(int n) {
		if(row!=colnum) {
			cerr<<"can't exp on different row and colnum"<<endl;
			exit(-1);
		}
		Matrix<T>res(row,colnum),b(*this);
		res.setv(T(0));
		for(int i = 0; i < row; i++) res.base[i][i] = T(1);
		while(n > 0) {
			if(n & 1)res = res * b;
			b = (b * b);
			n >>= 1;
		}
		return res;
	}
	void debug() {
		for(int i = 0; i < row; i++) {
			for(int j = 0; j < colnum; j++)
				cout<<base[i][j]<<" \n"[j+1==colnum];
		}
	}
	~Matrix() {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
	}
};
int main(int argc, char const *argv[])
{
	int p,q,n;
	while(scanf("%d%d%d",&p,&q,&n)==3) {
		if(n==0)puts("2");
		else {
			Matrix<ll> A(1,2);
			A[0][0] = p;A[0][1] = 2;
			Matrix<ll> B(2,2);
			B[0][0] = p;B[0][1] = 1;
			B[1][0] = -q; B[1][1] = 0;
			printf("%lld\n", (A*B.exp(n-1))[0][0]);
		}
	}
	return 0;
}#include <iostream>
#include <cstdio>
#include <cstdlib>
typedef long long ll;
#define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it)
using namespace std;
const int maxn = 2e5 + 10;
int mod = 0;
template <typename T> struct Matrix
{
	T ** base;
	int row,colnum;
	Matrix(int n = 0,int m = 0):row(n),colnum(m) {
		base = new T * [n];
		for(int i = 0; i < n; i++)
			base[i] = new T [m];
	}
	Matrix (const Matrix<T> & A) {
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	Matrix operator + (const Matrix <T> &A)const{
		Matrix<T> res(row,colnum);
		for(int i = 0; i < row; i++) {
			for(int j = 0; j < colnum; j++) {
				res.base[i][j] = base[i][j] + A.base[i][j];
				if(mod)res.base[i][j] %= mod;
			}
		}
		return res;
	}
	void operator = (const Matrix<T> & A) {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	T * operator [] (const int & i) {
		return base[i];
	}
	void setv(const T & val) {
		for(int i = 0; i < row; i++)
			for(int j = 0; j < colnum; j++)
				base[i][j] = val;
	}
	Matrix ones(int n) const{
		Matrix<T> res(n,n);
		for(int i = 0; i < n; i++)
			for(int j = 0; j < n; j++)
				res.base[i][j] = (T)(i==j);
		return res;
	}
	Matrix operator * (const Matrix<T> & rhs) const {
		if(colnum != rhs.row) {
			cerr<<"worng size of two Matrix"<<endl;
			exit(-1);
		}
		Matrix<T> c(row,rhs.colnum);
		c.setv(T(0));
		for(int k = 0; k < colnum; k++) {
			for(int i = 0; i < row; i++) {
				T r = base[i][k];
				if(!r)continue;
				for(int j = 0; j < c.colnum; j++) {
					c[i][j] += r*rhs.base[k][j];
					if(mod)c[i][j] %= mod;
				}
			}
		}
		return c;
	}
	Matrix exp(int n) const{
		if(row!=colnum) {
			cerr<<"can't exp on different row and colnum"<<endl;
			exit(-1);
		}
		Matrix<T>res = ones(row),b(*this);
		while(n > 0) {
			if(n & 1)res = res * b;
			b = (b * b);
			n >>= 1;
		}
		return res;
	}
	void debug()const{
		for(int i = 0; i < row; i++) {
			for(int j = 0; j < colnum; j++)
				cout<<base[i][j]<<" \n"[j+1==colnum];
		}
	}
	~Matrix() {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
	}
};
template<typename T>Matrix<T> gao(const Matrix<T> &A,int k) {
	if(k==0)return A.ones(A.row);
	if(k==1)return A;
	Matrix<T> c = gao(A,k>>1);
	Matrix<T> t = A.exp(k>>1);
	c = c + c*t;
	if(k&1)c = c + t*t*A;
	return c;
}
int main(int argc, char const *argv[])
{
	int n,k;
	while(scanf("%d%d%d",&n,&k,&mod)==3) {
		Matrix<int>A(n,n);
		for(int i = 0; i < A.row; i++)
			for(int j = 0; j < A.colnum; j++)
				scanf("%d",&A[i][j]);
		(gao(A,k)).debug();
	}
	return 0;
}
#include <iostream>
#include <cstdio>
#include <cstdlib>
typedef long long ll;
#define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it)
using namespace std;
const int maxn = 2e5 + 10;
ll mod = 0;
template <typename T> struct Matrix
{
	T ** base;
	int row,colnum;
	Matrix(int n = 0,int m = 0):row(n),colnum(m) {
		base = new T * [n];
		for(int i = 0; i < n; i++)
			base[i] = new T [m];
	}
	Matrix (const Matrix<T> & A) {
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	Matrix operator + (const Matrix <T> &A)const{
		Matrix<T> res(row,colnum);
		for(int i = 0; i < row; i++) {
			for(int j = 0; j < colnum; j++) {
				res.base[i][j] = base[i][j] + A.base[i][j];
				if(mod)res.base[i][j] %= mod;
			}
		}
		return res;
	}
	void operator = (const Matrix<T> & A) {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	T * operator [] (const int & i) {
		return base[i];
	}
	void setv(const T & val) {
		for(int i = 0; i < row; i++)
			for(int j = 0; j < colnum; j++)
				base[i][j] = val;
	}
	Matrix ones(int n) const{
		Matrix<T> res(n,n);
		for(int i = 0; i < n; i++)
			for(int j = 0; j < n; j++)
				res.base[i][j] = (T)(i==j);
		return res;
	}
	Matrix operator * (const Matrix<T> & rhs) const {
		if(colnum != rhs.row) {
			cerr<<"worng size of two Matrix"<<endl;
			exit(-1);
		}
		Matrix<T> c(row,rhs.colnum);
		c.setv((T)0);
		for(int k = 0; k < colnum; k++) {
			for(int i = 0; i < row; i++) {
				T r = base[i][k];
				if(!r)continue;
				for(int j = 0; j < c.colnum; j++) {
					c[i][j] += r*rhs.base[k][j];
					if(mod)c[i][j] %= mod;
				}
			}
		}
		return c;
	}
	Matrix exp(int n) const{
		if(row!=colnum) {
			cerr<<"can't exp on different row and colnum"<<endl;
			exit(-1);
		}
		Matrix<T>res = ones(row),b(*this);
		while(n > 0) {
			if(n & 1)res = res * b;
			b = (b * b);
			n >>= 1;
		}
		return res;
	}
	void debug()const{
		for(int i = 0; i < row; i++) {
			for(int j = 0; j < colnum; j++)
				cout<<base[i][j]<<" \n"[j+1==colnum];
		}
	}
	~Matrix() {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
	}
};
template<typename T>Matrix<T> gao(const Matrix<T> &A,int k) {
	if(k==0)return A.ones(A.row);
	if(k==1)return A;
	Matrix<T> c = gao(A,k>>1);
	Matrix<T> t = A.exp(k>>1);
	c = c + c*t;
	if(k&1)c = c + t*t*A;
	return c;
}
int main(int argc, char const *argv[])
{
	int n,k,b;
	Matrix<ll> a0(1,2);
	a0[0][0] = 1; a0[0][1] = 0;
	Matrix<ll> q0(2,2); q0.setv(1);
	q0[1][1] = 0;
	while(scanf("%d%d%d%I64d",&k,&b,&n,&mod)==4) {
		Matrix<ll> A = a0*(q0.exp(b));
		Matrix<ll> Q = q0.exp(k);
		if(n==1) printf("%I64d\n", A[0][1]);
		else {
			printf("%I64d\n",(A*(Q.ones(Q.row) + gao(Q,n-1)))[0][1]);
		}
	}
	return 0;
}#include <iostream>
#include <cstdio>
#include <cstdlib>
typedef long long ll;
#define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it)
using namespace std;
const int maxn = 2e5 + 10;
ll mod = 0;
template <typename T> struct Matrix
{
	T ** base;
	int row,colnum;
	Matrix(int n = 0,int m = 0):row(n),colnum(m) {
		base = new T * [n];
		for(int i = 0; i < n; i++)
			base[i] = new T [m];
	}
	Matrix (const Matrix<T> & A) {
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	Matrix operator + (const Matrix <T> &A)const{
		Matrix<T> res(row,colnum);
		for(int i = 0; i < row; i++) {
			for(int j = 0; j < colnum; j++) {
				res.base[i][j] = base[i][j] + A.base[i][j];
				if(mod)res.base[i][j] %= mod;
			}
		}
		return res;
	}
	void operator = (const Matrix<T> & A) {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	T * operator [] (const int & i) {
		return base[i];
	}
	void setv(const T & val) {
		for(int i = 0; i < row; i++)
			for(int j = 0; j < colnum; j++)
				base[i][j] = val;
	}
	Matrix ones(int n) const{
		Matrix<T> res(n,n);
		for(int i = 0; i < n; i++)
			for(int j = 0; j < n; j++)
				res.base[i][j] = (T)(i==j);
		return res;
	}
	Matrix operator * (const Matrix<T> & rhs) const {
		if(colnum != rhs.row) {
			cerr<<"worng size of two Matrix"<<endl;
			exit(-1);
		}
		Matrix<T> c(row,rhs.colnum);
		c.setv((T)0);
		for(int k = 0; k < colnum; k++) {
			for(int i = 0; i < row; i++) {
				T r = base[i][k];
				if(!r)continue;
				for(int j = 0; j < c.colnum; j++) {
					c[i][j] += r*rhs.base[k][j];
					if(mod)c[i][j] %= mod;
				}
			}
		}
		return c;
	}
	Matrix exp(int n) const{
		if(row!=colnum) {
			cerr<<"can't exp on different row and colnum"<<endl;
			exit(-1);
		}
		Matrix<T>res = ones(row),b(*this);
		while(n > 0) {
			if(n & 1)res = res * b;
			b = (b * b);
			n >>= 1;
		}
		return res;
	}
	void debug()const{
		for(int i = 0; i < row; i++) {
			for(int j = 0; j < colnum; j++)
				cout<<base[i][j]<<" \n"[j+1==colnum];
		}
	}
	~Matrix() {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
	}
};
template<typename T>Matrix<T> gao(const Matrix<T> &A,int k) {
	if(k==0)return A.ones(A.row);
	if(k==1)return A;
	Matrix<T> c = gao(A,k>>1);
	Matrix<T> t = A.exp(k>>1);
	c = c + c*t;
	if(k&1)c = c + t*t*A;
	return c;
}
int main(int argc, char const *argv[])
{
	int n,k,b;
	Matrix<ll> a0(1,2);
	a0[0][0] = 1; a0[0][1] = 0;
	Matrix<ll> q0(2,2); q0.setv(1);
	q0[1][1] = 0;
	while(scanf("%d%d%d%I64d",&k,&b,&n,&mod)==4) {
		Matrix<ll> A = a0*(q0.exp(b));
		Matrix<ll> Q = q0.exp(k);
		if(n==1) printf("%I64d\n", A[0][1]);
		else {
			printf("%I64d\n",(A*(Q.ones(Q.row) + gao(Q,n-1)))[0][1]);
		}
	}
	return 0;
}#include <iostream>
#include <cstdio>
#include <cstdlib>
typedef long long ll;
#define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it)
using namespace std;
const int maxn = 2e5 + 10;
ll mod = 0;
template <typename T> struct Matrix
{
	T ** base;
	int row,colnum;
	Matrix(int n = 0,int m = 0):row(n),colnum(m) {
		base = new T * [n];
		for(int i = 0; i < n; i++)
			base[i] = new T [m];
	}
	Matrix (const Matrix<T> & A) {
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	Matrix operator + (const Matrix <T> &A)const{
		Matrix<T> res(row,colnum);
		for(int i = 0; i < row; i++) {
			for(int j = 0; j < colnum; j++) {
				res.base[i][j] = base[i][j] + A.base[i][j];
				if(mod)res.base[i][j] %= mod;
			}
		}
		return res;
	}
	void operator = (const Matrix<T> & A) {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
		row = A.row;
		colnum = A.colnum;
		base = new T *[row];
		for(int i = 0; i < row; i++) {
			base[i] = new T [colnum];
			for(int j = 0; j < colnum; j++)
				base[i][j] = A.base[i][j];
		}
	}
	T * operator [] (const int & i) {
		return base[i];
	}
	void setv(const T & val) {
		for(int i = 0; i < row; i++)
			for(int j = 0; j < colnum; j++)
				base[i][j] = val;
	}
	Matrix ones(int n) const{
		Matrix<T> res(n,n);
		for(int i = 0; i < n; i++)
			for(int j = 0; j < n; j++)
				res.base[i][j] = (T)(i==j);
		return res;
	}
	Matrix operator * (const Matrix<T> & rhs) const {
		if(colnum != rhs.row) {
			cerr<<"worng size of two Matrix"<<endl;
			exit(-1);
		}
		Matrix<T> c(row,rhs.colnum);
		c.setv((T)0);
		for(int k = 0; k < colnum; k++) {
			for(int i = 0; i < row; i++) {
				T r = base[i][k];
				if(!r)continue;
				for(int j = 0; j < c.colnum; j++) {
					c[i][j] += r*rhs.base[k][j];
					if(mod)c[i][j] %= mod;
				}
			}
		}
		return c;
	}
	Matrix exp(int n) const{
		if(row!=colnum) {
			cerr<<"can't exp on different row and colnum"<<endl;
			exit(-1);
		}
		Matrix<T>res = ones(row),b(*this);
		while(n > 0) {
			if(n & 1)res = res * b;
			b = (b * b);
			n >>= 1;
		}
		return res;
	}
	void debug()const{
		for(int i = 0; i < row; i++) {
			for(int j = 0; j < colnum; j++)
				cout<<base[i][j]<<" \n"[j+1==colnum];
		}
	}
	~Matrix() {
		for(int i = 0; i < row; i++) delete [] base[i];
		delete [] base;
	}
};
int main(int argc, char const *argv[])
{
	int n,m;
	mod = 1000;
	while(scanf("%d%d",&n,&m)==2) {
		if(n+m==0)return 0;
		Matrix<int> A(n,n);
		A.setv(0);
		while(m--) {
			int u,v;scanf("%d%d",&u,&v);
			A[u][v] = 1;
		}
		int T;scanf("%d",&T);
		while(T--) {
			int s,t,k; scanf("%d%d%d",&s,&t,&k);
			printf("%d\n",A.exp(k)[s][t]);
		}
	}
	return 0;
}#include <cstdio> #include <cstring> #include <cstdlib> #include <iostream> typedef long long ll; const ll inf = 1e17 + 10; #define Type ll #define SIZER 50 #define SIZEC 50 #define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it) using namespace std; int mod = 0; const int maxn = 5000000 + 4; struct Matrix { Type a[SIZER][SIZEC]; int row,colunm; Matrix(int n = 1,int m = 1):row(n),colunm(m){} bool samerc(const Matrix & rhs) const{ return rhs.row == row && rhs.colunm == colunm; } bool canmul(const Matrix & rhs) const{ return colunm == rhs.row; } Matrix operator + (const Matrix & rhs) const{ if(!samerc(rhs)) { puts("size Dont match"); exit(-1); } Matrix c(row,colunm); for(int i = 0; i < row; i++) for(int j = 0; j < colunm; j++) { c.a[i][j] = a[i][j] + rhs.a[i][j]; if(mod) c.a[i][j] %= mod; } return c; } void one() { for(int i = 0; i < row; i++) for(int j = 0; j < colunm; j++) a[i][j] = (i==j); } void debug() { for(int i = 0; i < row; i++) for(int j = 0; j < colunm; j++) cout<<a[i][j]<<" \n"[j+1==colunm]; } void Zero() { memset(a,0,sizeof a); } Matrix operator * (const Matrix & rhs) const{ if(!canmul(rhs)) { puts("can‘t mul Matrix with wrong size"); exit(-1); } Matrix c(row,rhs.colunm); for(int i = 0; i < c.row; i++) { for(int j = 0; j < c.colunm; j++) { c.a[i][j] = inf; } } for(int i = 0; i < row; i++) for(int j = 0; j < rhs.colunm; j++) for(int k = 0; k < colunm; k++) c.a[i][j] = min(c.a[i][j],a[i][k] + rhs.a[k][j]); return c; } }; Matrix quick_exp(const Matrix & A,int k) { Matrix res = A,b = A; k--; while(k > 0) { if(k&1)res = res * b; k >>= 1; b = b*b; } return res; } int main() { int T;scanf("%d",&T); while(T--) { ll n,h,k;scanf("%I64d%I64d%I64d",&n,&h,&k); Matrix A(n,n); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { A.a[i][j] = inf; } } while(h--) { ll u,v,w;scanf("%I64d%I64d%I64d",&u,&v,&w); u--,v--; A.a[u][v] = min(A.a[u][v],w); } ll ans = quick_exp(A,k).a[0][n-1]; if(ans>= inf) ans = -1; printf("%I64d\n",ans); } return 0; }
原文:http://blog.csdn.net/acvcla/article/details/46064845