首页 > 其他 > 详细

why constrained regression and Regularized regression equivalent

时间:2015-05-29 06:11:05      阅读:272      评论:0      收藏:0      [点我收藏+]

problem 1:

  $\min_{\beta} ~f_\alpha(\beta):=\frac{1}{2}\Vert y-X\beta\Vert^2 +\alpha\Vert \beta\Vert$

problem 2:

  $\min_{\beta} ~\frac{1}{2}\Vert y-X\beta\Vert^2 \\ s.t.~\Vert \beta\Vert-c\leq 0$

problem 2 Lagrangian:

      $\mathcal{L}(\beta,\lambda)=\frac{1}{2}\Vert y-X\beta\Vert^2+\lambda (\Vert \beta\Vert-c)$

kkt shows:

dual-inner optimal:$\beta^*=min_{\beta}~\mathcal{L}(\beta,\lambda):=\frac{1}{2}\Vert y-X\beta\Vert^2+\lambda (\Vert \beta\Vert-c)$

primal-inner optimal:$\lambda^*(\Vert \beta\Vert-c)=0$

 

for problem 1:

$\beta^*=\min_{\beta} ~f_\alpha(\beta):=\frac{1}{2}\Vert y-X\beta\Vert^2 +\alpha\Vert \beta\Vert$

set $\lambda = \alpha$ and $c=\Vert \beta\Vert$

can see both kkt conditions meet

why constrained regression and Regularized regression equivalent

原文:http://www.cnblogs.com/porco/p/4537507.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!