题目:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
解题思路:这是一道斐波拉契数列题。看到斐波那契数列就自然想到利用递归,然而在这里递归的效率非常低,荣誉计算的数量增长的非常快,直接导致出现TLE(Time Limit Exceeded)错误。这是因为在递归的时候许多值被重复计算了多次,根据《C和指针》上对斐波那契数列的介绍,在n=30时,Fibonacci(3)的值被计算了317811次。这是非常可怕的,因此我又采用迭代的思路写了一组代码。迭代的思路也比较简单,设定初始f(1)和f(2)的值,在每次迭代中将前两次的计算结果相加作为本次计算结果即可。下面给出递归代码和迭代代码。
递归代码(出现超时错误):
class Solution { public: int climbStairs(int n) { int CurrChoices; if(n==0){ CurrChoices=1; }else if(n==1){ CurrChoices=climbStairs(n-1); }else{ CurrChoices=climbStairs(n-1)+climbStairs(n-2); } return CurrChoices; } };
迭代代码:
class Solution { public: int climbStairs(int n) { int CurrChoice,OlderChoice,OldestChoice; CurrChoice=OlderChoice=OldestChoice=1; if(n==0)return 1; if(n==1)return 1; while(n>1){ n-=1; OldestChoice=OlderChoice; OlderChoice=CurrChoice; CurrChoice=OlderChoice+OldestChoice; } return CurrChoice; } };
【Leetcode】Climbing Stairs,布布扣,bubuko.com
原文:http://blog.csdn.net/ussam/article/details/21620817