首页 > 编程语言 > 详细

【原创】batch-GD, SGD, Mini-batch-GD, Stochastic GD, Online-GD -- 大数据背景下的梯度训练算法

时间:2015-06-06 19:21:26      阅读:8426      评论:0      收藏:0      [点我收藏+]

机器学习中梯度下降(Gradient Descent, GD)算法只需要计算损失函数的一阶导数,计算代价小,非常适合训练数据非常大的应用。

梯度下降法的物理意义很好理解,就是沿着当前点的梯度方向进行线搜索,找到下一个迭代点。但是,为什么有会派生出 batch、mini-batch、online这些GD算法呢?

原来,batch、mini-batch、SGD、online的区别在于训练数据的选择上:

  batch mini-batch Stochastic Online
训练集 固定 固定 固定 实时更新
单次迭代样本数 整个训练集 训练集的子集 单个样本 根据具体算法定
算法复杂度 一般
时效性 一般(delta 模型) 一般(delta 模型)

 

1. batch GD

每次迭代的梯度方向计算由所有训练样本共同投票决定,

batch GD的损失函数是:

\[J(\theta ) = \frac{1}{{2m}}\sum\limits_{i = 1}^m {{{({h_\theta }({x^{(i)}}) - {y^{(i)}})}^2}} \]

训练算法为:

\[\begin{array}{l}
repeate\{ \\
\theta : = \theta - \alpha \frac{1}{m}\sum\limits_{i = 1}^m ( {h_\theta }({x^{(i)}}) - {y^{(i)}})x_j^{(i)}\\
\}
\end{array}\]

什么意思呢,batch GD算法是计算损失函数在整个训练集上的梯度方向,沿着该方向搜寻下一个迭代点。”batch“的含义是训练集中所有样本参与每一轮迭代。

2. mini-batch GD

batch GD每一轮迭代需要所有样本参与,对于大规模的机器学习应用,经常有billion级别的训练集,计算复杂度非常高。因此,有学者就提出,反正训练集只是数据分布的一个采样集合,我们能不能在每次迭代只利用部分训练集样本呢?这就是mini-batch算法。

假设训练集有m个样本,每个mini-batch(训练集的一个子集)有b个样本,那么,整个训练集可以分成m/b个mini-batch。我们用\(\omega \)表示一个mini-batch, 用\({\Omega _j}\)表示第j轮迭代中所有mini-batch集合,有:

\[\Omega  = \{ {\omega _k}:k = 1,2...m/b\} \]

那么, mini-batch GD算法流程如下:

\[\begin{array}{l}
repeate\{ \\
{\rm{ }}repeate\{ \\
{\rm{ for each }}{\omega _k}{\rm{ in }}\Omega :\\
{\rm{ }}\theta : = \theta - \alpha \frac{1}{b}\sum\limits_{i = 1}^b ( {h_\theta }({x^{(i)}}) - {y^{(i)}}){x^{(i)}}\\
{\rm{ }}\} for(k = 1,2...m/b)\\
\}
\end{array}\]

3. Stochastic GD (SGD)

 随机梯度下降算法(SGD)是mini-batch GD的一个特殊应用。SGD等价于b=1的mini-batch GD。即,每个mini-batch中只有一个训练样本。

4. Online GD

随着互联网行业的蓬勃发展,数据变得越来越“廉价”。很多应用有实时的,不间断的训练数据产生。在线学习(Online Learning)算法就是充分利用实时数据的一个训练算法。

Online GD于mini-batch GD/SGD的区别在于,所有训练数据只用一次,然后丢弃。这样做的好处是可以最终模型的变化趋势。比如搜索广告的点击率(CTR)预估模型,网民的点击行为会随着时间改变。用batch算法(每天更新一次)一方面耗时较长(需要对所有历史数据重新训练);另一方面,无法及时反馈用户的点击行为迁移。而Online Leaning的算法可以实时的最终网民的点击行为迁移。

 

Ref:

1. http://en.wikipedia.org/wiki/Gradient_descent

 

【原创】batch-GD, SGD, Mini-batch-GD, Stochastic GD, Online-GD -- 大数据背景下的梯度训练算法

原文:http://www.cnblogs.com/richqian/p/4549590.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!