注意:
(1)加上火之后,预处理出每个格子的最早着火时间,当Joe走到格子时,进行判断能否走即可。
(2)刚开始的着火点有多个,如何同时求在多个着火点的情况下的最早着火时间。
考虑建造一个超级源,连向出始得着火点,则一次广搜即可。
思考可以建造超级源的条件???
每个着火点的蔓延过程是相互独立的,且每个格子最小着火时间即所有着火点蔓延到该格子时间的最小值。
//#pragma warning (disable: 4786) //#pragma comment (linker, "/STACK:16777216") //HEAD #include <cstdio> #include <ctime> #include <cstdlib> #include <cstring> #include <queue> #include <string> #include <set> #include <stack> #include <map> #include <cmath> #include <vector> #include <iostream> #include <algorithm> using namespace std; //LOOP #define FE(i, a, b) for(int i = (a); i <= (b); ++i) #define FD(i, b, a) for(int i = (b); i>= (a); --i) #define REP(i, N) for(int i = 0; i < (N); ++i) #define CLR(A,value) memset(A,value,sizeof(A)) #define CPY(a, b) memcpy(a, b, sizeof(a)) #define FC(it, c) for(__typeof((c).begin()) it = (c).begin(); it != (c).end(); it++) //INPUT #define RI(n) scanf("%d", &n) #define RII(n, m) scanf("%d%d", &n, &m) #define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k) #define RS(s) scanf("%s", s) //OUTPUT #define WI(n) printf("%d\n", n) #define WS(s) printf("%s\n", s) typedef long long LL; const int INF = 0x3f3f3f3f; const double eps = 1e-10; const int maxn = 20; typedef pair<int, int> pii; queue<pii>Q; pii st; struct node{ pii x; int dis; node(pii x, int dis): x(x), dis(dis){} }; queue<node>q; char s[1010]; int tab[1010][1010]; int n, m; int dir_i[4] = {1, -1, 0, 0}; int dir_j[4] = {0, 0, 1, -1}; bool vis[1010][1010]; bool check(int x, int y) { if (x < 0 || x >= n || y < 0 || y >= m) return false; return true; } int main () { int T; scanf("%d",&T); while (T--) { while (!Q.empty()) Q.pop(); while (!q.empty()) q.pop(); memset(vis, 0, sizeof(vis)); memset(tab, INF, sizeof(tab)); scanf("%d%d", &n, &m); for (int i = 0; i < n; i++) { scanf("%s", s); for (int j = 0; j < m; j++) { if (s[j] == ‘#‘) tab[i][j] = 0; else if (s[j] == ‘F‘) { Q.push(make_pair(i, j)); tab[i][j] = 0; } else if (s[j] == ‘J‘) st = make_pair(i, j); } } while (!Q.empty()) { pii x = Q.front(); Q.pop(); for (int r = 0; r < 4; r++) { int ni = x.first + dir_i[r]; int nj = x.second + dir_j[r]; if (check(ni, nj) && tab[ni][nj] > tab[x.first][x.second] + 1) { tab[ni][nj] = tab[x.first][x.second] + 1; Q.push(make_pair(ni, nj)); } } } q.push(node(st, 0)); vis[st.first][st.second] = true; int fla = 0, ans; if (st.first == 0 || st.first == n - 1 || st.second == 0 || st.second == m - 1) { fla = 1; ans = 1; } while (!q.empty()) { if (fla) break; node a = q.front(); q.pop(); pii x = a.x; int nextx = a.dis + 1; for (int r = 0; r < 4; r++) { int ni = x.first + dir_i[r]; int nj = x.second + dir_j[r]; if (check(ni, nj) && !vis[ni][nj] && tab[ni][nj] > nextx) { if (ni == 0 || ni == n - 1 || nj == 0 || nj == m - 1) { fla = 1; ans = nextx + 1; break; } vis[ni][nj] = true; q.push(node(make_pair(ni, nj), nextx)); } } } if (fla) printf("%d\n", ans); else puts("IMPOSSIBLE"); } return 0; }
原文:http://blog.csdn.net/guognib/article/details/21712581