平衡二叉树(Self-Balancing Binary Search Tree/Height-Balanced Binary Search Tree),是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1.
平衡二叉树的前提是二叉排序树,不是二叉排序树的都不是平衡二叉树。
平衡因子BF(Balance Factor):二叉树上节点的左子树深度减去右子树深度的值。
最小不平衡子树:距离插入节点最近的,且平衡因子的绝对值大于1的节点为根的子树。
下图中,新插入节点37时,距离它最近的平衡因子绝对值超过1的节点是58,所以从58开始以下的子树为最小不平衡子树。
实现原理
构建二叉排序树的过程中,每当插入一个节点时,先检查是否因插入而破坏了树的平衡性,若是,则找出最小不平衡子树。在保持二叉排序树特性的前提下,调整最小不平衡子树中各个节点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。
a[10]={3,2,1,4,5,6,7,10,9,8}
插入3,2,1时,右旋一次,插入4,5左旋一次
插入6,左旋一次,插入7,左旋一次
插入10,9时,不是简单的左旋,这时要统一BF。7的BF=-2,10的BF=1,一正一负,符号不统一。先对9,10右旋,再以7为最小不平衡子树左旋
得到图13后,插入8,和上面类似
实现算法
右旋算法
/* 二叉树的二叉链表结点结构定义 */
typedef struct BiTNode /* 结点结构 */
{
int data; /* 结点数据 */
int bf; /* 结点的平衡因子 */
struct BiTNode *lchild, *rchild; /* 左右孩子指针 */
} BiTNode, *BiTree;
/* 对以p为根的二叉排序树作右旋处理, */
/* 处理之后p指向新的树根结点,即旋转处理之前的左子树的根结点 */
void R_Rotate(BiTree *P)
{
BiTree L;
L=(*P)->lchild; /* L指向P的左子树根结点 */
(*P)->lchild=L->rchild; /* L的右子树挂接为P的左子树 */
L->rchild=(*P);
*P=L; /* P指向新的根结点 */
}
左旋算法类似。
左平衡旋转处理算法
#define LH +1 /* 左高 */
#define EH 0 /* 等高 */
#define RH -1 /* 右高 */
/* 对以指针T所指结点为根的二叉树作左平衡旋转处理 */
/* 本算法结束时,指针T指向新的根结点 */
void LeftBalance(BiTree *T)
{
BiTree L,Lr;
L=(*T)->lchild; /* L指向T的左子树根结点 */
switch(L->bf)
{ /* 检查T的左子树的平衡度,并作相应平衡处理 */
case LH: /* 新结点插入在T的左孩子的左子树上,要作单右旋处理 */
(*T)->bf=L->bf=EH;
R_Rotate(T);
break;
case RH: /* 新结点插入在T的左孩子的右子树上,要作双旋处理 */
Lr=L->rchild; /* Lr指向T的左孩子的右子树根 */
switch(Lr->bf)
{ /* 修改T及其左孩子的平衡因子 */
case LH: (*T)->bf=RH;
L->bf=EH;
break;
case EH: (*T)->bf=L->bf=EH;
break;
case RH: (*T)->bf=EH;
L->bf=LH;
break;
}
Lr->bf=EH;
L_Rotate(&(*T)->lchild); /* 对T的左子树作左旋平衡处理 */
R_Rotate(T); /* 对T作右旋平衡处理 */
}
}
右平衡旋转处理算法类似。
附加源码
#include "stdio.h"
#include "stdlib.h"
#include "io.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100 /* 存储空间初始分配量 */
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
/* 二叉树的二叉链表结点结构定义 */
typedef struct BiTNode /* 结点结构 */
{
int data; /* 结点数据 */
int bf; /* 结点的平衡因子 */
struct BiTNode *lchild, *rchild; /* 左右孩子指针 */
} BiTNode, *BiTree;
/* 对以p为根的二叉排序树作右旋处理, */
/* 处理之后p指向新的树根结点,即旋转处理之前的左子树的根结点 */
void R_Rotate(BiTree *P)
{
BiTree L;
L=(*P)->lchild; /* L指向P的左子树根结点 */
(*P)->lchild=L->rchild; /* L的右子树挂接为P的左子树 */
L->rchild=(*P);
*P=L; /* P指向新的根结点 */
}
/* 对以P为根的二叉排序树作左旋处理, */
/* 处理之后P指向新的树根结点,即旋转处理之前的右子树的根结点0 */
void L_Rotate(BiTree *P)
{
BiTree R;
R=(*P)->rchild; /* R指向P的右子树根结点 */
(*P)->rchild=R->lchild; /* R的左子树挂接为P的右子树 */
R->lchild=(*P);
*P=R; /* P指向新的根结点 */
}
#define LH +1 /* 左高 */
#define EH 0 /* 等高 */
#define RH -1 /* 右高 */
/* 对以指针T所指结点为根的二叉树作左平衡旋转处理 */
/* 本算法结束时,指针T指向新的根结点 */
void LeftBalance(BiTree *T)
{
BiTree L,Lr;
L=(*T)->lchild; /* L指向T的左子树根结点 */
switch(L->bf)
{ /* 检查T的左子树的平衡度,并作相应平衡处理 */
case LH: /* 新结点插入在T的左孩子的左子树上,要作单右旋处理 */
(*T)->bf=L->bf=EH;
R_Rotate(T);
break;
case RH: /* 新结点插入在T的左孩子的右子树上,要作双旋处理 */
Lr=L->rchild; /* Lr指向T的左孩子的右子树根 */
switch(Lr->bf)
{ /* 修改T及其左孩子的平衡因子 */
case LH: (*T)->bf=RH;
L->bf=EH;
break;
case EH: (*T)->bf=L->bf=EH;
break;
case RH: (*T)->bf=EH;
L->bf=LH;
break;
}
Lr->bf=EH;
L_Rotate(&(*T)->lchild); /* 对T的左子树作左旋平衡处理 */
R_Rotate(T); /* 对T作右旋平衡处理 */
}
}
/* 对以指针T所指结点为根的二叉树作右平衡旋转处理, */
/* 本算法结束时,指针T指向新的根结点 */
void RightBalance(BiTree *T)
{
BiTree R,Rl;
R=(*T)->rchild; /* R指向T的右子树根结点 */
switch(R->bf)
{ /* 检查T的右子树的平衡度,并作相应平衡处理 */
case RH: /* 新结点插入在T的右孩子的右子树上,要作单左旋处理 */
(*T)->bf=R->bf=EH;
L_Rotate(T);
break;
case LH: /* 新结点插入在T的右孩子的左子树上,要作双旋处理 */
Rl=R->lchild; /* Rl指向T的右孩子的左子树根 */
switch(Rl->bf)
{ /* 修改T及其右孩子的平衡因子 */
case RH: (*T)->bf=LH;
R->bf=EH;
break;
case EH: (*T)->bf=R->bf=EH;
break;
case LH: (*T)->bf=EH;
R->bf=RH;
break;
}
Rl->bf=EH;
R_Rotate(&(*T)->rchild); /* 对T的右子树作右旋平衡处理 */
L_Rotate(T); /* 对T作左旋平衡处理 */
}
}
/* 若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个 */
/* 数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树 */
/* 失去平衡,则作平衡旋转处理,布尔变量taller反映T长高与否。 */
Status InsertAVL(BiTree *T,int e,Status *taller)
{
if(!*T)
{ /* 插入新结点,树“长高”,置taller为TRUE */
*T=(BiTree)malloc(sizeof(BiTNode));
(*T)->data=e; (*T)->lchild=(*T)->rchild=NULL; (*T)->bf=EH;
*taller=TRUE;
}
else
{
if (e==(*T)->data)
{ /* 树中已存在和e有相同关键字的结点则不再插入 */
*taller=FALSE; return FALSE;
}
if (e<(*T)->data)
{ /* 应继续在T的左子树中进行搜索 */
if(!InsertAVL(&(*T)->lchild,e,taller)) /* 未插入 */
return FALSE;
if(taller) /* 已插入到T的左子树中且左子树“长高” */
switch((*T)->bf) /* 检查T的平衡度 */
{
case LH: /* 原本左子树比右子树高,需要作左平衡处理 */
LeftBalance(T); *taller=FALSE; break;
case EH: /* 原本左、右子树等高,现因左子树增高而使树增高 */
(*T)->bf=LH; *taller=TRUE; break;
case RH: /* 原本右子树比左子树高,现左、右子树等高 */
(*T)->bf=EH; *taller=FALSE; break;
}
}
else
{ /* 应继续在T的右子树中进行搜索 */
if(!InsertAVL(&(*T)->rchild,e,taller)) /* 未插入 */
return FALSE;
if(*taller) /* 已插入到T的右子树且右子树“长高” */
switch((*T)->bf) /* 检查T的平衡度 */
{
case LH: /* 原本左子树比右子树高,现左、右子树等高 */
(*T)->bf=EH; *taller=FALSE; break;
case EH: /* 原本左、右子树等高,现因右子树增高而使树增高 */
(*T)->bf=RH; *taller=TRUE; break;
case RH: /* 原本右子树比左子树高,需要作右平衡处理 */
RightBalance(T); *taller=FALSE; break;
}
}
}
return TRUE;
}
int main(void)
{
int i;
int a[10]={3,2,1,4,5,6,7,10,9,8};
BiTree T=NULL;
Status taller;
for(i=0;i<10;i++)
{
InsertAVL(&T,a[i],&taller);
}
printf("本样例建议断点跟踪查看平衡二叉树结构");
return 0;
}
原文:http://blog.csdn.net/wtyvhreal/article/details/46432487