首页 > 其他 > 详细

[LeetCode] 4Sum

时间:2015-06-11 01:47:15      阅读:257      评论:0      收藏:0      [点我收藏+]

Well, this problem has a O(n^3) solution similar to 3Sum. That is, fix two elements nums[i] and nums[j] (i < j) and search in the remaining array for two elements that sum to the target - nums[i] - nums[j]. Since i and j both have O(n) possible values and searching in the remaining array for two elements (just like 3Sum that fixes one and search for two other) has O(n) complexity using two pointers (left and right), the total time complexity is O(n^3).

The code is as follows, which should explain itself.

 1     vector<vector<int> > fourSum(vector<int>& nums, int target) {
 2         sort(nums.begin(), nums.end());
 3         vector<vector<int> > res;
 4         for (int i = 0; i < (int)nums.size() - 3; i++) {
 5             for (int j = i + 1; j < (int)nums.size() - 2; j++) {
 6                 int left = j + 1, right = nums.size() - 1;
 7                 while (left < right) {
 8                     int temp = nums[i] + nums[j] + nums[left] + nums[right];
 9                     if (temp == target) {
10                         vector<int> sol(4);
11                         sol[0] = nums[i];
12                         sol[1] = nums[j];
13                         sol[2] = nums[left];
14                         sol[3] = nums[right];
15                         res.push_back(sol);
16                         while (left < right && nums[left] == sol[2]) left++;
17                         while (left < right && nums[right] == sol[3]) right--;
18                     }
19                     else if (temp < target) left++;
20                     else right--;
21                 }
22                 while (j + 1 < (int)nums.size() - 2 && nums[j + 1] == nums[j]) j++;
23             }
24             while (i + 1 < (int)nums.size() - 3 && nums[i + 1] == nums[i]) i++;
25         }
26         return res;
27     }

In fact, there is also a O(n^2logn) solution, which I will post soon.

[LeetCode] 4Sum

原文:http://www.cnblogs.com/jcliBlogger/p/4567868.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!