题目原型:
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s = "aab"
,
Return
[
["aa","b"],
["a","a","b"]
]
基本思路:
思路一:递归
public ArrayList<ArrayList<String>> partition(String s) { ArrayList<ArrayList<String>> list = new ArrayList<ArrayList<String>>(); ArrayList<String> tmp = new ArrayList<String>(); getRs(list, tmp, s); return list; } public void getRs(ArrayList<ArrayList<String>> list,ArrayList<String> tmp,String s) { if(s.length()==0||s==null) { list.add(new ArrayList<String>(tmp)); return; } else { for(int i = 1;i<=s.length();i++) { if(isPalindrome(s.substring(0, i))) { tmp.add(s.substring(0, i)); getRs(list, tmp, s.substring(i)); tmp.remove(tmp.size()-1); } } } } //判断一个字符串是否是回文 public boolean isPalindrome(String s) { if(s==null||s.length()==0) return true; for(int i = 0,j = s.length()-1;i<j;i++,j--) { if(s.charAt(i)!=s.charAt(j)) return false; } return true; }
思路二:
利用一个table表存放某个字符到另一个字符之间是否是回文。例如要判断i和j之间的字符串是否是回文,那么我们就要判断s[i]?=s[j]和i+1与j-1之间是字符串是否是回文。
public ArrayList<ArrayList<String>> partition(String s) { //创建一个table表 boolean[][] table = new boolean[s.length()][s.length()]; for(int i = 0;i<table.length;i++) { for(int j = 0;j<table.length;j++) table[i][j] = true; } //产生table表 genTable(table,s); ArrayList<ArrayList<String>> list = new ArrayList<ArrayList<String>>(); ArrayList<String> tmp = new ArrayList<String>(); getRs(list, tmp, s, table, 0); return list; } public void getRs(ArrayList<ArrayList<String>> list,ArrayList<String> tmp,String s,boolean[][] table,int start) { if(start == s.length()) { list.add(new ArrayList<String>(tmp)); return; } else { for(int i = 1;i<=s.length()-start;i++) { if(table[start][start+i-1]) { tmp.add(s.substring(start, start+i)); getRs(list, tmp, s,table,start+i); tmp.remove(tmp.size()-1); } } } } //产生table表 public void genTable(boolean[][] table,String s) { //根据间距从小到大来遍历 for(int dis = 1;dis<table.length;dis++) { for(int i = 0,j = i+dis;j<table.length;i++,j++) { table[i][j] = (table[i+1][j-1]&&(s.charAt(i)==s.charAt(j))); } } }
Palindrome Partitioning,布布扣,bubuko.com
原文:http://blog.csdn.net/cow__sky/article/details/21736297