A*
B
a11
a12 a13 a14
a21
a22 .................
..................................
*
.............................a44
A:
m * n, B: n * p
Cij=
SUM(Aik*Bkj), k -> [1,n];
matix*
several column vector , the corresponding
severalrow
vector * matrix.
m*1*
1*p
A*B=
sum ( columns of A * rows of B )
[A11,A12]
* [ B11, B12 ] = [ A11*B11 + A12*B21,A11*B12+A12*B22
]
[A21,A22]
[ B21, B22 ] [ A21*B11+ A22*B22,
A21*B12+A22*B22 ]
Ifthere
exists A‘ of A . that A‘ * A = I ( we call
it invertible,non-singular.) , the A‘ is the inverse of
A.
andif
A is a square matrix A‘*A = I = A*A‘;
[ 1 3 ; 2 6 ];
1. the linear combination of columns
of A. and all lies on (1,2) socant combine(1,0)
2. there is a lema? say that Ax
= 0 and x != 0. then A has noinverse.
Intuition , that says
that some/all columns of Acould form zero vector. So that they are linear
dependent ? means lies onthe same direction.
Sothere
will get no A‘ in this case.
Howcan
we get the inverse of A?
Gauss-
Jordan ( solve 2 equations at once )
13
27*
[ a ; b ] = [ 1 ; 0 ]
13
27
* [ c; d ] = [ 0 ; 1 ]
andhow
can we solve it , use following ideas.
AI
--> I A-1
look
more detail for 3.乘法和逆矩阵.mp4later.
NotesMITLinearAlgebra,布布扣,bubuko.com
原文:http://www.cnblogs.com/hphp/p/3617012.html