首页 > 其他 > 详细

Coursera台大机器学习课程笔记10 -- Linear Models for Classification

时间:2015-06-27 15:46:12      阅读:168      评论:0      收藏:0      [点我收藏+]

这一节讲线性模型,先将几种线性模型进行了对比,通过转换误差函数来将linear regression 和logistic regression 用于分类。

比较重要的是这种图,它解释了为何可以用Linear Regression或Logistic Regression来替代Linear Classification

技术分享

然后介绍了随机梯度下降法,主要是对梯度下降法的一个改进,大大提高了效率。

最后讲了多类别分类,主要有两种策略:OVA和OVO

OVA思想很简单,但如果类别很多并且每个类别的数目都差不多时,就会出现问题。

这个问题可用OVO解决,每次选择两个类别,然后进行投票。

Coursera台大机器学习课程笔记10 -- Linear Models for Classification

原文:http://www.cnblogs.com/573177885qq/p/4603862.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!