首页 > 其他 > 详细

1216: 斐波那契数列

时间:2015-06-28 06:24:33      阅读:171      评论:0      收藏:0      [点我收藏+]

From:  合工宣OJ      http://xcacm.hfut.edu.cn/problem.php?id=1216

时间限制: 1 Sec  内存限制: 128 MB

题目描述 Fibonacci数列,定义如下: f(1)=f(2)=1 f(n)=f(n-1)+f(n-2) n>=3 计算第n项Fibonacci数值。

输入

输入第一行为一个整数n(1<=n<=10000)。

输出

输出对应的f(n)。

样例输入

1 2 3 4 5

样例输出

1 1 2 3 5

本题需要用到大整数,unsign long long已经明显装不下了,c++没有内置封装好的大整数(而JAVA是有的),需要自己定义大整数,大整数的模板很好找到,然而很多功能需要根据实际需要删减,本题只需重载加减符号,然而为用的方便此处未作删减。菲波那切递推公式已经给出,只需循环将每一个情况存在大整数开出的数组里,用时调用即可。原先把#define MAX_L 3000 开到了10000 结果出现内存超限,改合适一些内存会降低很多。 代码如下:

  1 #include<string>
  2 #include<iostream>
  3 #include<iosfwd>
  4 #include<cmath>
  5 #include<cstring>
  6 #include<stdlib.h>
  7 #include<stdio.h>
  8 #include<cstring>
  9 #define MAX_L 3000 
 10 using namespace std;
 11 class bign                           //定义大整数
 12 {
 13 public:
 14         int len, s[MAX_L];
 15         bign();
 16         bign(const char*);
 17         bign(int);
 18         bool sign;
 19         string toStr() const;
 20         friend istream& operator>>(istream &,bign &);
 21         friend ostream& operator<<(ostream &,bign &);
 22         bign operator=(const char*);
 23         bign operator=(int);
 24         bign operator=(const string);
 25         bool operator>(const bign &) const;
 26         bool operator>=(const bign &) const;
 27         bool operator<(const bign &) const;
 28         bool operator<=(const bign &) const;
 29         bool operator==(const bign &) const;
 30         bool operator!=(const bign &) const;
 31         bign operator+(const bign &) const;
 32         bign operator++();
 33         bign operator++(int);
 34         bign operator+=(const bign&);
 35         bign operator-(const bign &) const;
 36         bign operator--();
 37         bign operator--(int);
 38         bign operator-=(const bign&);
 39         bign operator*(const bign &)const;
 40         bign operator*(const int num)const;
 41         bign operator*=(const bign&);
 42         bign operator/(const bign&)const;
 43         bign operator/=(const bign&);
 44         bign operator%(const bign&)const;
 45         void clean();
 46         ~bign();
 47 };
 48 #define max(a,b) a>b ? a : b
 49 #define min(a,b) a<b ? a : b
 50 bign::bign()
 51 {
 52     memset(s, 0, sizeof(s));
 53     len = 1;
 54     sign = 1;
 55 }
 56 bign::bign(const char *num)
 57 {
 58     *this = num;
 59 }
 60 bign::bign(int num)
 61 {
 62     *this = num;
 63 }
 64 string bign::toStr() const
 65 {
 66     string res;
 67     res = "";
 68     for (int i = 0; i < len; i++)
 69         res = (char)(s[i] + 0) + res;
 70     if (res == "")
 71         res = "0";
 72     if (!sign&&res != "0")
 73         res = "-" + res;
 74     return res;
 75 }
 76 istream &operator>>(istream &in, bign &num)
 77 {
 78     string str;
 79     in>>str;
 80     num=str;
 81     return in;
 82 }
 83 ostream &operator<<(ostream &out, bign &num)
 84 {
 85     out<<num.toStr();
 86     return out;
 87 }
 88 bign bign::operator=(const char *num)
 89 {
 90     memset(s, 0, sizeof(s));
 91     char a[MAX_L] = "";
 92     if (num[0] != -)
 93         strcpy(a, num);
 94     else
 95         for (int i = 1; i < strlen(num); i++)
 96             a[i - 1] = num[i];
 97     sign = !(num[0] == -);
 98     len = strlen(a);
 99     for (int i = 0; i < strlen(a); i++)
100         s[i] = a[len - i - 1] - 48;
101     return *this;
102 }
103 bign bign::operator=(int num)
104 {
105     if (num < 0)
106         sign = 0, num = -num;
107     else
108         sign = 1;
109     char temp[MAX_L];
110     sprintf(temp, "%d", num);
111     *this = temp;
112     return *this;
113 }
114 bign bign::operator=(const string num)
115 {
116     const char *tmp;
117     tmp = num.c_str();
118     *this = tmp;
119     return *this;
120 }
121 bool bign::operator<(const bign &num) const
122 {
123     if (sign^num.sign)
124         return num.sign;
125     if (len != num.len)
126         return len < num.len;
127     for (int i = len - 1; i >= 0; i--)
128         if (s[i] != num.s[i])
129             return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
130     return !sign;
131 }
132 bool bign::operator>(const bign&num)const
133 {
134     return num < *this;
135 }
136 bool bign::operator<=(const bign&num)const
137 {
138     return !(*this>num);
139 }
140 bool bign::operator>=(const bign&num)const
141 {
142     return !(*this<num);
143 }
144 bool bign::operator!=(const bign&num)const
145 {
146     return *this > num || *this < num;
147 }
148 bool bign::operator==(const bign&num)const
149 {
150     return !(num != *this);
151 }
152 bign bign::operator+(const bign &num) const
153 {
154     if (sign^num.sign)
155     {
156         bign tmp = sign ? num : *this;
157         tmp.sign = 1;
158         return sign ? *this - tmp : num - tmp;
159     }
160     bign result;
161     result.len = 0;
162     int temp = 0;
163     for (int i = 0; temp || i < (max(len, num.len)); i++)
164     {
165         int t = s[i] + num.s[i] + temp;
166         result.s[result.len++] = t % 10;
167         temp = t / 10;
168     }
169     result.sign = sign;
170     return result;
171 }
172 bign bign::operator++()
173 {
174     *this = *this + 1;
175     return *this;
176 }
177 bign bign::operator++(int)
178 {
179     bign old = *this;
180     ++(*this);
181     return old;
182 }
183 bign bign::operator+=(const bign &num)
184 {
185     *this = *this + num;
186     return *this;
187 }
188 bign bign::operator-(const bign &num) const
189 {
190     bign b=num,a=*this;
191     if (!num.sign && !sign)
192     {
193         b.sign=1;
194         a.sign=1;
195         return b-a;
196     }
197     if (!b.sign)
198     {
199         b.sign=1;
200         return a+b;
201     }
202     if (!a.sign)
203     {
204         a.sign=1;
205         b=bign(0)-(a+b);
206         return b;
207     }
208     if (a<b)
209     {
210         bign c=(b-a);
211         c.sign=false;
212         return c;
213     }
214     bign result;
215     result.len = 0;
216     for (int i = 0, g = 0; i < a.len; i++)
217     {
218         int x = a.s[i] - g;
219         if (i < b.len) x -= b.s[i];
220         if (x >= 0) g = 0;
221         else
222         {
223             g = 1;
224             x += 10;
225         }
226         result.s[result.len++] = x;
227     }
228     result.clean();
229     return result;
230 }
231 bign bign::operator * (const bign &num)const
232 {
233     bign result;
234     result.len = len + num.len;
235 
236     for (int i = 0; i < len; i++)
237         for (int j = 0; j < num.len; j++)
238             result.s[i + j] += s[i] * num.s[j];
239 
240     for (int i = 0; i < result.len; i++)
241     {
242         result.s[i + 1] += result.s[i] / 10;
243         result.s[i] %= 10;
244     }
245     result.clean();
246     result.sign = !(sign^num.sign);
247     return result;
248 }
249 bign bign::operator*(const int num)const
250 {
251     bign x = num;
252     bign z = *this;
253     return x*z;
254 }
255 bign bign::operator*=(const bign&num)
256 {
257     *this = *this * num;
258     return *this;
259 }
260 bign bign::operator /(const bign&num)const
261 {
262     bign ans;
263     ans.len = len - num.len + 1;
264     if (ans.len < 0)
265     {
266         ans.len = 1;
267         return ans;
268     }
269 
270     bign divisor = *this, divid = num;
271     divisor.sign = divid.sign = 1;
272     int k = ans.len - 1;
273     int j = len - 1;
274     while (k >= 0)
275     {
276         while (divisor.s[j] == 0) j--;
277         if (k > j) k = j;
278         char z[MAX_L];
279         memset(z, 0, sizeof(z));
280         for (int i = j; i >= k; i--)
281             z[j - i] = divisor.s[i] + 0;
282         bign dividend = z;
283         if (dividend < divid) { k--; continue; }
284         int key = 0;
285         while (divid*key <= dividend) key++;
286         key--;
287         ans.s[k] = key;
288         bign temp = divid*key;
289         for (int i = 0; i < k; i++)
290             temp = temp * 10;
291         divisor = divisor - temp;
292         k--;
293     }
294     ans.clean();
295     ans.sign = !(sign^num.sign);
296     return ans;
297 }
298 bign bign::operator/=(const bign&num)
299 {
300     *this = *this / num;
301     return *this;
302 }
303 bign bign::operator%(const bign& num)const
304 {
305     bign a = *this, b = num;
306     a.sign = b.sign = 1;
307     bign result, temp = a / b*b;
308     result = a - temp;
309     result.sign = sign;
310     return result;
311 }
312 void bign::clean()
313 {
314     if (len == 0) len++;
315     while (len > 1 && s[len - 1] == \0)
316         len--;
317 }
318 bign::~bign() {}
319 
320 bign f[10002];             //大整数数组
321 
322 int main()
323 {
324     int a,i;
325     f[4]=3;f[1]=1;f[2]=1;f[3]=2;
326     for(i=5;i<=10000;i++)
327     {
328         f[i]=f[i-1]+f[i-2];
329     }
330    while(cin>>a)
331    {
332         cout<<f[a]<<endl;
333    }
334    return 0;
335 }
336 /**************************************************************
337     Problem: 1216
338     User: 2014217052
339     Language: C++
340     Result: 正确
341     Time:864 ms
342     Memory:118808 kb
343 ****************************************************************/

 

1216: 斐波那契数列

原文:http://www.cnblogs.com/dzzy/p/4605060.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!