在进行曲线拟合时用的最多的是最小二乘法,其中以一元函数(线性)和多元函数(多项式)居多,下面这个类专门用于进行多项式拟合,可以根据用户输入的阶次进行多项式拟合,算法来自于网上,和GSL的拟合算法对比过,没有问题。此类在拟合完后还能计算拟合之后的误差:SSE(剩余平方和),SSR(回归平方和),RMSE(均方根误差),R-square(确定系数)。
先看看fit类的代码:(只有一个头文件方便使用)
#ifndef CZY_MATH_FIT
#define CZY_MATH_FIT
#include <vector>
/*
尘中远,于2014.03.20
主页:http://blog.csdn.net/czyt1988/article/details/21743595
参考:http://blog.csdn.net/maozefa/article/details/1725535
*/
namespace czy{
///
/// \brief 曲线拟合类
///
class Fit{
std::vector<double> factor; ///<拟合后的方程系数
double ssr; ///<回归平方和
double sse; ///<(剩余平方和)
double rmse; ///<RMSE均方根误差
std::vector<double> fitedYs;///<存放拟合后的y值,在拟合时可设置为不保存节省内存
public:
Fit():ssr(0),sse(0),rmse(0){factor.resize(2,0);}
~Fit(){}
///
/// \brief 直线拟合-一元回归,拟合的结果可以使用getFactor获取,或者使用getSlope获取斜率,getIntercept获取截距
/// \param x 观察值的x
/// \param y 观察值的y
/// \param isSaveFitYs 拟合后的数据是否保存,默认否
///
template<typename T>
bool linearFit(const std::vector<typename T>& x, const std::vector<typename T>& y,bool isSaveFitYs=false)
{
return linearFit(&x[0],&y[0],getSeriesLength(x,y),isSaveFitYs);
}
template<typename T>
bool linearFit(const T* x, const T* y,size_t length,bool isSaveFitYs=false)
{
factor.resize(2,0);
typename T t1=0, t2=0, t3=0, t4=0;
for(int i=0; i<length; ++i)
{
t1 += x[i]*x[i];
t2 += x[i];
t3 += x[i]*y[i];
t4 += y[i];
}
factor[1] = (t3*length - t2*t4) / (t1*length - t2*t2);
factor[0] = (t1*t4 - t2*t3) / (t1*length - t2*t2);
//////////////////////////////////////////////////////////////////////////
//计算误差
calcError(x,y,length,this->ssr,this->sse,this->rmse,isSaveFitYs);
return true;
}
///
/// \brief 多项式拟合,拟合y=a0+a1*x+a2*x^2+……+apoly_n*x^poly_n
/// \param x 观察值的x
/// \param y 观察值的y
/// \param poly_n 期望拟合的阶数,若poly_n=2,则y=a0+a1*x+a2*x^2
/// \param isSaveFitYs 拟合后的数据是否保存,默认是
///
template<typename T>
void polyfit(const std::vector<typename T>& x
,const std::vector<typename T>& y
,int poly_n
,bool isSaveFitYs=true)
{
polyfit(&x[0],&y[0],getSeriesLength(x,y),poly_n,isSaveFitYs);
}
template<typename T>
void polyfit(const T* x,const T* y,size_t length,int poly_n,bool isSaveFitYs=true)
{
factor.resize(poly_n+1,0);
int i,j;
//double *tempx,*tempy,*sumxx,*sumxy,*ata;
std::vector<double> tempx(length,1.0);
std::vector<double> tempy(y,y+length);
std::vector<double> sumxx(poly_n*2+1);
std::vector<double> ata((poly_n+1)*(poly_n+1));
std::vector<double> sumxy(poly_n+1);
for (i=0;i<2*poly_n+1;i++){
for (sumxx[i]=0,j=0;j<length;j++)
{
sumxx[i]+=tempx[j];
tempx[j]*=x[j];
}
}
for (i=0;i<poly_n+1;i++){
for (sumxy[i]=0,j=0;j<length;j++)
{
sumxy[i]+=tempy[j];
tempy[j]*=x[j];
}
}
for (i=0;i<poly_n+1;i++)
for (j=0;j<poly_n+1;j++)
ata[i*(poly_n+1)+j]=sumxx[i+j];
gauss_solve(poly_n+1,ata,factor,sumxy);
//计算拟合后的数据并计算误差
fitedYs.reserve(length);
calcError(&x[0],&y[0],length,this->ssr,this->sse,this->rmse,isSaveFitYs);
}
///
/// \brief 获取系数
/// \param 存放系数的数组
///
void getFactor(std::vector<double>& factor){factor = this->factor;}
///
/// \brief 获取拟合方程对应的y值,前提是拟合时设置isSaveFitYs为true
///
void getFitedYs(std::vector<double>& fitedYs){fitedYs = this->fitedYs;}
///
/// \brief 根据x获取拟合方程的y值
/// \return 返回x对应的y值
///
template<typename T>
double getY(const T x) const
{
double ans(0);
for (size_t i=0;i<factor.size();++i)
{
ans += factor[i]*pow((double)x,(int)i);
}
return ans;
}
///
/// \brief 获取斜率
/// \return 斜率值
///
double getSlope(){return factor[1];}
///
/// \brief 获取截距
/// \return 截距值
///
double getIntercept(){return factor[0];}
///
/// \brief 剩余平方和
/// \return 剩余平方和
///
double getSSE(){return sse;}
///
/// \brief 回归平方和
/// \return 回归平方和
///
double getSSR(){return ssr;}
///
/// \brief 均方根误差
/// \return 均方根误差
///
double getRMSE(){return rmse;}
///
/// \brief 确定系数,系数是0~1之间的数,是数理上判定拟合优度的一个量
/// \return 确定系数
///
double getR_square(){return 1-(sse/(ssr+sse));}
///
/// \brief 获取两个vector的安全size
/// \return 最小的一个长度
///
template<typename T>
size_t getSeriesLength(const std::vector<typename T>& x
,const std::vector<typename T>& y)
{
return (x.size() > y.size() ? y.size() : x.size());
}
///
/// \brief 计算均值
/// \return 均值
///
template <typename T>
static T Mean(const std::vector<T>& v)
{
return Mean(&v[0],v.size());
}
template <typename T>
static T Mean(const T* v,size_t length)
{
T total(0);
for (size_t i=0;i<length;++i)
{
total += v[i];
}
return (total / length);
}
///
/// \brief 获取拟合方程系数的个数
/// \return 拟合方程系数的个数
///
size_t getFactorSize(){return factor.size();}
///
/// \brief 根据阶次获取拟合方程的系数,
/// 如getFactor(2),就是获取y=a0+a1*x+a2*x^2+……+apoly_n*x^poly_n中a2的值
/// \return 拟合方程的系数
///
double getFactor(size_t i){return factor.at(i);}
private:
template<typename T>
void calcError(const T* x
,const T* y
,size_t length
,double& r_ssr
,double& r_sse
,double& r_rmse
,bool isSaveFitYs=true
)
{
T mean_y = Mean<T>(y,length);
T yi(0);
fitedYs.reserve(length);
for (int i=0; i<length; ++i)
{
yi = getY(x[i]);
r_ssr += ((yi-mean_y)*(yi-mean_y));//计算回归平方和
r_sse += ((yi-y[i])*(yi-y[i]));//残差平方和
if (isSaveFitYs)
{
fitedYs.push_back(double(yi));
}
}
r_rmse = sqrt(r_sse/(double(length)));
}
template<typename T>
void gauss_solve(int n
,std::vector<typename T>& A
,std::vector<typename T>& x
,std::vector<typename T>& b)
{
gauss_solve(n,&A[0],&x[0],&b[0]);
}
template<typename T>
void gauss_solve(int n
,T* A
,T* x
,T* b)
{
int i,j,k,r;
double max;
for (k=0;k<n-1;k++)
{
max=fabs(A[k*n+k]); /*find maxmum*/
r=k;
for (i=k+1;i<n-1;i++){
if (max<fabs(A[i*n+i]))
{
max=fabs(A[i*n+i]);
r=i;
}
}
if (r!=k){
for (i=0;i<n;i++) /*change array:A[k]&A[r] */
{
max=A[k*n+i];
A[k*n+i]=A[r*n+i];
A[r*n+i]=max;
}
}
max=b[k]; /*change array:b[k]&b[r] */
b[k]=b[r];
b[r]=max;
for (i=k+1;i<n;i++)
{
for (j=k+1;j<n;j++)
A[i*n+j]-=A[i*n+k]*A[k*n+j]/A[k*n+k];
b[i]-=A[i*n+k]*b[k]/A[k*n+k];
}
}
for (i=n-1;i>=0;x[i]/=A[i*n+i],i--)
for (j=i+1,x[i]=b[i];j<n;j++)
x[i]-=A[i*n+j]*x[j];
}
};
}
#endif为了防止重命名,把其放置于czy的命名空间中,此类主要两个函数:
1.求解线性拟合:
/// /// \brief 直线拟合-一元回归,拟合的结果可以使用getFactor获取,或者使用getSlope获取斜率,getIntercept获取截距 /// \param x 观察值的x /// \param y 观察值的y /// \param length x,y数组的长度 /// \param isSaveFitYs 拟合后的数据是否保存,默认否 /// template<typename T> bool linearFit(const std::vector<typename T>& x, const std::vector<typename T>& y,bool isSaveFitYs=false); template<typename T> bool linearFit(const T* x, const T* y,size_t length,bool isSaveFitYs=false);
/// /// \brief 多项式拟合,拟合y=a0+a1*x+a2*x^2+……+apoly_n*x^poly_n /// \param x 观察值的x /// \param y 观察值的y /// \param length x,y数组的长度 /// \param poly_n 期望拟合的阶数,若poly_n=2,则y=a0+a1*x+a2*x^2 /// \param isSaveFitYs 拟合后的数据是否保存,默认是 /// template<typename T> void polyfit(const std::vector<typename T>& x,const std::vector<typename T>& y,int poly_n,bool isSaveFitYs=true); template<typename T> void polyfit(const T* x,const T* y,size_t length,int poly_n,bool isSaveFitYs=true);
这两个函数都用模板函数形式写,主要是为了能使用于float和double两种数据类型
新建对话框文件,
对话框资源文件如图所示:
加入下面的这些变量:
std::vector<double> m_x,m_y,m_yploy; const size_t m_size; CChartLineSerie *m_pLineSerie1; CChartLineSerie *m_pLineSerie2;
ClineFitDlg::ClineFitDlg(CWnd* pParent /*=NULL*/) : CDialogEx(ClineFitDlg::IDD, pParent) ,m_size(512) ,m_pLineSerie1(NULL)
CChartAxis *pAxis = NULL;
pAxis = m_chartCtrl.CreateStandardAxis(CChartCtrl::BottomAxis);
pAxis->SetAutomatic(true);
pAxis = m_chartCtrl.CreateStandardAxis(CChartCtrl::LeftAxis);
pAxis->SetAutomatic(true);
m_x.resize(m_size);
m_y.resize(m_size);
m_yploy.resize(m_size);
for(size_t i =0;i<m_size;++i)
{
m_x[i] = i;
m_y[i] = i+randf(-25,28);
m_yploy[i] = 0.005*pow(double(i),2)+0.0012*i+4+randf(-25,25);
}
m_chartCtrl.RemoveAllSeries();//先清空
m_pLineSerie1 = m_chartCtrl.CreateLineSerie();
m_pLineSerie1->SetSeriesOrdering(poNoOrdering);//设置为无序
m_pLineSerie1->AddPoints(&m_x[0], &m_y[0], m_size);
m_pLineSerie1->SetName(_T("线性数据"));
m_pLineSerie2 = m_chartCtrl.CreateLineSerie();
m_pLineSerie2->SetSeriesOrdering(poNoOrdering);//设置为无序
m_pLineSerie2->AddPoints(&m_x[0], &m_yploy[0], m_size);
m_pLineSerie2->SetName(_T("多项式数据"));rangf是随机数生成函数,实现如下:
double ClineFitDlg::randf(double min,double max)
{
int minInteger = (int)(min*10000);
int maxInteger = (int)(max*10000);
int randInteger = rand()*rand();
int diffInteger = maxInteger - minInteger;
int resultInteger = randInteger % diffInteger + minInteger;
return resultInteger/10000.0;
}
线性拟合的使用如下:
void ClineFitDlg::OnBnClickedButton1()
{
CString str,strTemp;
czy::Fit fit;
fit.linearFit(m_x,m_y);
str.Format(_T("方程:y=%gx+%g\r\n误差:ssr:%g,sse=%g,rmse:%g,确定系数:%g"),fit.getSlope(),fit.getIntercept()
,fit.getSSR(),fit.getSSE(),fit.getRMSE(),fit.getR_square());
GetDlgItemText(IDC_EDIT,strTemp);
SetDlgItemText(IDC_EDIT,strTemp+_T("\r\n------------------------\r\n")+str);
//在图上绘制拟合的曲线
CChartLineSerie* pfitLineSerie1 = m_chartCtrl.CreateLineSerie();
std::vector<double> x(2,0),y(2,0);
x[0] = 0;x[1] = m_size-1;
y[0] = fit.getY(x[0]);y[1] = fit.getY(x[1]);
pfitLineSerie1->SetSeriesOrdering(poNoOrdering);//设置为无序
pfitLineSerie1->AddPoints(&x[0], &y[0], 2);
pfitLineSerie1->SetName(_T("拟合方程"));//SetName的作用将在后面讲到
pfitLineSerie1->SetWidth(2);
}运行结果如图所示:
多项式拟合的使用如下:
void ClineFitDlg::OnBnClickedButton2()
{
CString str;
GetDlgItemText(IDC_EDIT1,str);
if (str.IsEmpty())
{
MessageBox(_T("请输入阶次"),_T("警告"));
return;
}
int n = _ttoi(str);
if (n<0)
{
MessageBox(_T("请输入大于1的阶数"),_T("警告"));
return;
}
czy::Fit fit;
fit.polyfit(m_x,m_yploy,n,true);
CString strFun(_T("y=")),strTemp(_T(""));
for (int i=0;i<fit.getFactorSize();++i)
{
if (0 == i)
{
strTemp.Format(_T("%g"),fit.getFactor(i));
}
else
{
double fac = fit.getFactor(i);
if (fac<0)
{
strTemp.Format(_T("%gx^%d"),fac,i);
}
else
{
strTemp.Format(_T("+%gx^%d"),fac,i);
}
}
strFun += strTemp;
}
str.Format(_T("方程:%s\r\n误差:ssr:%g,sse=%g,rmse:%g,确定系数:%g"),strFun
,fit.getSSR(),fit.getSSE(),fit.getRMSE(),fit.getR_square());
GetDlgItemText(IDC_EDIT,strTemp);
SetDlgItemText(IDC_EDIT,strTemp+_T("\r\n------------------------\r\n")+str);
//绘制拟合后的多项式
std::vector<double> yploy;
fit.getFitedYs(yploy);
CChartLineSerie* pfitLineSerie1 = m_chartCtrl.CreateLineSerie();
pfitLineSerie1->SetSeriesOrdering(poNoOrdering);//设置为无序
pfitLineSerie1->AddPoints(&m_x[0], &yploy[0], yploy.size());
pfitLineSerie1->SetName(_T("多项式拟合方程"));//SetName的作用将在后面讲到
pfitLineSerie1->SetWidth(2);
}for (int i=0;i<fit.getFactorSize();++i)
{
if (0 == i)
{
strTemp.Format(_T("%g"),fit.getFactor(i));
}
else
{
double fac = fit.getFactor(i);
if (fac<0)
{
strTemp.Format(_T("%gx^%d"),fac,i);
}
else
{
strTemp.Format(_T("+%gx^%d"),fac,i);
}
}
strFun += strTemp;
}C++最小二乘法拟合-(线性拟合和多项式拟合),布布扣,bubuko.com
原文:http://blog.csdn.net/czyt1988/article/details/21743595