首页 > 其他 > 详细

双向链表

时间:2014-03-23 22:51:29      阅读:674      评论:0      收藏:0      [点我收藏+]

双向链表概述

双向链表是一种基本的数据结构,有着广泛的应用。本博文实现了双向链表的创建、删除、遍历、替换、插入(从表头插入和从表尾插入)、元素的移动以及其他的一些链表基本操作(判断是否为空、链表拆分、链表的合并、获取第一个元素、获取下一个元素、获取上一个元素等等)。具体的代码实现可以从http://download.csdn.net/detail/it_pcode/6632905获取。为了便于学习,本文也将代码贴出。并给出了一个简单的例子来使用该双向链表。

双向链表实现

该实现主要是来自于Linux内核对双向链表的实现,其实现精妙无比,与平时我们所使用的双向链表有所不同。请细细品味。

#ifndef LIST_H_
#define LIST_H_

#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>

/*通过父结构体type中的成员member的已知地址ptr,来寻找当前ptr地址所属的父结构体type的地址*/
#define container_of(ptr, type, member) ({ const typeof( ((type *)0)->member ) *__mptr = (ptr); (type *)( (char *)__mptr - offsetof(type,member) );})

/*内核预加载内容到RAM,在此不做实现*/
#define prefetch(x) (x)

/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

struct list_head {
	struct list_head *next, *prev;
};

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) 	struct list_head name = LIST_HEAD_INIT(name)

static inline void INIT_LIST_HEAD(struct list_head *list) {
	list->next = list;
	list->prev = list;
}

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_add(struct list_head *new, struct list_head *prev,
		struct list_head *next) {
	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head) {
	__list_add(new, head, head->next);
}

/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head) {
	__list_add(new, head->prev, head);
}

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head * prev, struct list_head * next) {
	next->prev = prev;
	prev->next = next;
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
static inline void list_del(struct list_head *entry) {
	__list_del(entry->prev, entry->next);
	entry->next = NULL;
	entry->prev = NULL;
}

/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old, struct list_head *new) {
	new->next = old->next;
	new->next->prev = new;
	new->prev = old->prev;
	new->prev->next = new;
}

static inline void list_replace_init(struct list_head *old,
		struct list_head *new) {
	list_replace(old, new);
	INIT_LIST_HEAD(old);
}

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry) {
	__list_del(entry->prev, entry->next);
	INIT_LIST_HEAD(entry);
}

/**
 * list_move - delete from one list and add as another‘s head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head) {
	__list_del(list->prev, list->next);
	list_add(list, head);
}

/**
 * list_move_tail - delete from one list and add as another‘s tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static inline void list_move_tail(struct list_head *list,
		struct list_head *head) {
	__list_del(list->prev, list->next);
	list_add_tail(list, head);
}

/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_last(const struct list_head *list,
		const struct list_head *head) {
	return list->next == head;
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head) {
	return head->next == head;
}

/**
 * list_empty_careful - tests whether a list is empty and not being modified
 * @head: the list to test
 *
 * Description:
 * tests whether a list is empty _and_ checks that no other CPU might be
 * in the process of modifying either member (next or prev)
 *
 * NOTE: using list_empty_careful() without synchronization
 * can only be safe if the only activity that can happen
 * to the list entry is list_del_init(). Eg. it cannot be used
 * if another CPU could re-list_add() it.
 */
static inline int list_empty_careful(const struct list_head *head) {
	struct list_head *next = head->next;
	return (next == head) && (next == head->prev);
}

/**
 * list_is_singular - tests whether a list has just one entry.
 * @head: the list to test.
 */
static inline int list_is_singular(const struct list_head *head) {
	return !list_empty(head) && (head->next == head->prev);
}

static inline void __list_cut_position(struct list_head *list,
		struct list_head *head, struct list_head *entry) {
	struct list_head *new_first = entry->next;
	list->next = head->next;
	list->next->prev = list;
	list->prev = entry;
	entry->next = list;
	head->next = new_first;
	new_first->prev = head;
}

/**
 * list_cut_position - cut a list into two
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *	and if so we won‘t cut the list
 *
 * This helper moves the initial part of @head, up to and
 * including @entry, from @head to @list. You should
 * pass on @entry an element you know is on @head. @list
 * should be an empty list or a list you do not care about
 * losing its data.
 *
 */
static inline void list_cut_position(struct list_head *list,
		struct list_head *head, struct list_head *entry) {
	if (list_empty(head))
		return;
	if (list_is_singular(head) && (head->next != entry && head != entry))
		return;
	if (entry == head)
		INIT_LIST_HEAD(list);
	else
		__list_cut_position(list, head, entry);
}

static inline void __list_splice(const struct list_head *list,
		struct list_head *prev, struct list_head *next) {
	struct list_head *first = list->next;
	struct list_head *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 * list_splice - join two lists, this is designed for stacks
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice(const struct list_head *list,
		struct list_head *head) {
	if (!list_empty(list))
		__list_splice(list, head, head->next);
}

/**
 * list_splice_tail - join two lists, each list being a queue
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice_tail(struct list_head *list,
		struct list_head *head) {
	if (!list_empty(list))
		__list_splice(list, head->prev, head);
}

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
		struct list_head *head) {
	if (!list_empty(list)) {
		__list_splice(list, head, head->next);
		INIT_LIST_HEAD(list);
	}
}

/**
 * list_splice_tail_init - join two lists and reinitialise the emptied list
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * Each of the lists is a queue.
 * The list at @list is reinitialised
 */
static inline void list_splice_tail_init(struct list_head *list,
		struct list_head *head) {
	if (!list_empty(list)) {
		__list_splice(list, head->prev, head);
		INIT_LIST_HEAD(list);
	}
}

/**
 * list_entry - get the struct for this entry
 * @ptr:	the &struct list_head pointer.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member) 	container_of(ptr, type, member)

/**
 * list_first_entry - get the first element from a list
 * @ptr:	the list head to take the element from.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_struct within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_first_entry(ptr, type, member) 	list_entry((ptr)->next, type, member)

/**
 * list_for_each	-	iterate over a list
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 */
#define list_for_each(pos, head) 	for (pos = (head)->next; prefetch(pos->next), pos != (head);         	pos = pos->next)

/**
 * __list_for_each	-	iterate over a list
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 *
 * This variant differs from list_for_each() in that it‘s the
 * simplest possible list iteration code, no prefetching is done.
 * Use this for code that knows the list to be very short (empty
 * or 1 entry) most of the time.
 */
#define __list_for_each(pos, head) 	for (pos = (head)->next; pos != (head); pos = pos->next)

/**
 * list_for_each_prev	-	iterate over a list backwards
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 */
#define list_for_each_prev(pos, head) 	for (pos = (head)->prev; prefetch(pos->prev), pos != (head);         	pos = pos->prev)

/**
 * list_for_each_safe - iterate over a list safe against removal of list entry
 * @pos:	the &struct list_head to use as a loop cursor.
 * @n:		another &struct list_head to use as temporary storage
 * @head:	the head for your list.
 */
#define list_for_each_safe(pos, n, head) 	for (pos = (head)->next, n = pos->next; pos != (head); 		pos = n, n = pos->next)

/**
 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 * @pos:	the &struct list_head to use as a loop cursor.
 * @n:		another &struct list_head to use as temporary storage
 * @head:	the head for your list.
 */
#define list_for_each_prev_safe(pos, n, head) 	for (pos = (head)->prev, n = pos->prev; 	     prefetch(pos->prev), pos != (head); 	     pos = n, n = pos->prev)

/**
 * list_for_each_entry	-	iterate over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 */
#define list_for_each_entry(pos, head, member)					for (pos = list_entry((head)->next, typeof(*pos), member);		     prefetch(pos->member.next), &pos->member != (head); 		     pos = list_entry(pos->member.next, typeof(*pos), member))

/**
 * list_for_each_entry_reverse - iterate backwards over list of given type.
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 */
#define list_for_each_entry_reverse(pos, head, member)				for (pos = list_entry((head)->prev, typeof(*pos), member);		     prefetch(pos->member.prev), &pos->member != (head); 		     pos = list_entry(pos->member.prev, typeof(*pos), member))

/**
 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 * @pos:	the type * to use as a start point
 * @head:	the head of the list
 * @member:	the name of the list_struct within the struct.
 *
 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 */
#define list_prepare_entry(pos, head, member) 	((pos) ? : list_entry(head, typeof(*pos), member))

/**
 * list_for_each_entry_continue - continue iteration over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 *
 * Continue to iterate over list of given type, continuing after
 * the current position.
 */
#define list_for_each_entry_continue(pos, head, member) 			for (pos = list_entry(pos->member.next, typeof(*pos), member);		     prefetch(pos->member.next), &pos->member != (head);		     pos = list_entry(pos->member.next, typeof(*pos), member))

/**
 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 *
 * Start to iterate over list of given type backwards, continuing after
 * the current position.
 */
#define list_for_each_entry_continue_reverse(pos, head, member)			for (pos = list_entry(pos->member.prev, typeof(*pos), member);		     prefetch(pos->member.prev), &pos->member != (head);		     pos = list_entry(pos->member.prev, typeof(*pos), member))

/**
 * list_for_each_entry_from - iterate over list of given type from the current point
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 *
 * Iterate over list of given type, continuing from current position.
 */
#define list_for_each_entry_from(pos, head, member) 				for (; prefetch(pos->member.next), &pos->member != (head);		     pos = list_entry(pos->member.next, typeof(*pos), member))

/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)				for (pos = list_entry((head)->next, typeof(*pos), member),			n = list_entry(pos->member.next, typeof(*pos), member);		     &pos->member != (head); 						     pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**
 * list_for_each_entry_safe_continue
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 *
 * Iterate over list of given type, continuing after current point,
 * safe against removal of list entry.
 */
#define list_for_each_entry_safe_continue(pos, n, head, member) 			for (pos = list_entry(pos->member.next, typeof(*pos), member), 				n = list_entry(pos->member.next, typeof(*pos), member);			     &pos->member != (head);							     pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**
 * list_for_each_entry_safe_from
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 *
 * Iterate over list of given type from current point, safe against
 * removal of list entry.
 */
#define list_for_each_entry_safe_from(pos, n, head, member) 				for (n = list_entry(pos->member.next, typeof(*pos), member);			     &pos->member != (head);							     pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**
 * list_for_each_entry_safe_reverse
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 *
 * Iterate backwards over list of given type, safe against removal
 * of list entry.
 */
#define list_for_each_entry_safe_reverse(pos, n, head, member)			for (pos = list_entry((head)->prev, typeof(*pos), member),			n = list_entry(pos->member.prev, typeof(*pos), member);		     &pos->member != (head); 						     pos = n, n = list_entry(n->member.prev, typeof(*n), member))

#endif /* LIST_H_ */

使用实例

要想使用该实现的双向链表,还需实现自己的查找操作函数。本博文简单实现如下:

struct stu_node {
	struct list_head listhead;
	int age;
};

//红黑树最大节点数目
#define STU_NUM 20

struct stu_node *stu_search(struct list_head *head, int age) {
	struct stu_node *stu = NULL;
	struct list_head *cur;
	list_for_each(cur, head) {
		stu = container_of(cur, struct stu_node, listhead);
		if (stu->age == age) {
			return stu;
		}
	}
	return NULL;
}

测试用例

void testlist() {
	struct list_head head;
	struct stu_node *stu = NULL;
	struct list_head *cur;
	int i = 0;

	INIT_LIST_HEAD(&head);
	if (1 == list_empty(&head)) {
		printf("start, list is empty \n");
	} else {
		printf("list is not empty,return \n");
		return;
	}
	//insert
	printf("start to insert element to the list \n");
	for (i = 0; i < STU_NUM; i = i + 2) {
		stu = malloc(sizeof(struct stu_node));
		stu->age = i + 10;
		list_add(&stu->listhead, &head);
	}

	for (i = 1; i < STU_NUM; i = i + 2) {
		stu = malloc(sizeof(struct stu_node));
		stu->age = i + 10;
		list_add(&stu->listhead, &head);
	}

	//travel
	printf("start to travel the list \n");

	list_for_each(cur, &head) {
		stu = container_of(cur, struct stu_node, listhead);
		printf("age %d \n", stu->age);
	}
	printf("end to travel the list \n");
	//delete
	srand(time(NULL));
	int key = rand() % STU_NUM;
	stu = stu_search(&head, 10 + key);
	if (NULL != stu) {
		printf("age %d is found, next delete it\n", stu->age);
		list_del(&stu->listhead);
		free(stu);
	} else {
		printf("age %d is not found\n", 10 + key);
	}
	stu = stu_search(&head, 10 + key);
	if (NULL != stu) {
		printf("delete age %d failed\n", 10 + key);
	} else {
		printf("delete age %d succeed\n", 10 + key);
	}

	return;
}

在main函数中,仅仅需要调用该测试接口即可。

双向链表,布布扣,bubuko.com

双向链表

原文:http://blog.csdn.net/pngynghay/article/details/21881959

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!