红黑树是一种自平衡二叉查找树,典型的用途是实现关联数组。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它可以在O(logn)时间内做查找,插入和删除,这里的n是树中元素的数目。红黑树是 2-3-4树的一种等同。换句话说,对于每个 2-3-4 树,都存在至少一个数据元素是同样次序的红黑树。详细的红黑树介绍参考我转载的一篇博文http://blog.csdn.net/pngynghay/article/details/8185351。本博文仅仅实现了rbtree以及如何使用rbtree。
本博文红黑树的实现取自Linux内核对红黑树的实现,只是,我去掉了内核实现中对内核的依赖,使得我们可以在用户态应用程序中依然可以使用。
rbtree.h
#ifndef RBTREE_H_ #define RBTREE_H_ #include <stdlib.h> #include <stddef.h> #include <stdio.h> #include <string.h> /*通过父结构体type中的成员member的已知地址ptr,来寻找当前ptr地址所属的父结构体type的地址*/ #define container_of(ptr, type, member) ({ const typeof( ((type *)0)->member ) *__mptr = (ptr); (type *)( (char *)__mptr - offsetof(type,member) );}) struct rb_node { unsigned long rb_parent_color; #define RB_RED 0 #define RB_BLACK 1 struct rb_node *rb_right; struct rb_node *rb_left; }__attribute__((aligned(sizeof(long)))); /* The alignment might seem pointless, but allegedly CRIS needs it */ struct rb_root { struct rb_node *rb_node; }; #define rb_parent(r) ((struct rb_node *)((r)->rb_parent_color & ~3)) #define rb_color(r) ((r)->rb_parent_color & 1) #define rb_is_red(r) (!rb_color(r)) #define rb_is_black(r) rb_color(r) #define rb_set_red(r) do { (r)->rb_parent_color &= ~1; } while (0) #define rb_set_black(r) do { (r)->rb_parent_color |= 1; } while (0) static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p) { rb->rb_parent_color = (rb->rb_parent_color & 3) | (unsigned long) p; } static inline void rb_set_color(struct rb_node *rb, int color) { rb->rb_parent_color = (rb->rb_parent_color & ~1) | color; } #define RB_ROOT (struct rb_root) { NULL, } #define rb_entry(ptr, type, member) container_of(ptr, type, member) #define RB_EMPTY_ROOT(root) ((root)->rb_node == NULL) #define RB_EMPTY_NODE(node) (rb_parent(node) == node) #define RB_CLEAR_NODE(node) (rb_set_parent(node, node)) extern void rb_insert_color(struct rb_node *, struct rb_root *); extern void rb_erase(struct rb_node *, struct rb_root *); /* Find logical next and previous nodes in a tree */ extern struct rb_node *rb_next(const struct rb_node *); extern struct rb_node *rb_prev(const struct rb_node *); extern struct rb_node *rb_first(const struct rb_root *); extern struct rb_node *rb_last(const struct rb_root *); /* Fast replacement of a single node without remove/rebalance/add/rebalance */ extern void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root); static inline void rb_link_node(struct rb_node * node, struct rb_node * parent, struct rb_node ** rb_link) { node->rb_parent_color = (unsigned long) parent; node->rb_left = node->rb_right = NULL; *rb_link = node; } #endif /* RBTREE_H_ */
rbtree.c
static void __rb_rotate_left(struct rb_node *node, struct rb_root *root) { struct rb_node *right = node->rb_right; struct rb_node *parent = rb_parent(node); if ((node->rb_right = right->rb_left)) rb_set_parent(right->rb_left, node); right->rb_left = node; rb_set_parent(right, parent); if (parent) { if (node == parent->rb_left) parent->rb_left = right; else parent->rb_right = right; } else root->rb_node = right; rb_set_parent(node, right); } static void __rb_rotate_right(struct rb_node *node, struct rb_root *root) { struct rb_node *left = node->rb_left; struct rb_node *parent = rb_parent(node); if ((node->rb_left = left->rb_right)) rb_set_parent(left->rb_right, node); left->rb_right = node; rb_set_parent(left, parent); if (parent) { if (node == parent->rb_right) parent->rb_right = left; else parent->rb_left = left; } else root->rb_node = left; rb_set_parent(node, left); } void rb_insert_color(struct rb_node *node, struct rb_root *root) { struct rb_node *parent, *gparent; while ((parent = rb_parent(node)) && rb_is_red(parent)) { gparent = rb_parent(parent); if (parent == gparent->rb_left) { { register struct rb_node *uncle = gparent->rb_right; if (uncle && rb_is_red(uncle)) { rb_set_black(uncle); rb_set_black(parent); rb_set_red(gparent); node = gparent; continue; } } if (parent->rb_right == node) { register struct rb_node *tmp; __rb_rotate_left(parent, root); tmp = parent; parent = node; node = tmp; } rb_set_black(parent); rb_set_red(gparent); __rb_rotate_right(gparent, root); } else { { register struct rb_node *uncle = gparent->rb_left; if (uncle && rb_is_red(uncle)) { rb_set_black(uncle); rb_set_black(parent); rb_set_red(gparent); node = gparent; continue; } } if (parent->rb_left == node) { register struct rb_node *tmp; __rb_rotate_right(parent, root); tmp = parent; parent = node; node = tmp; } rb_set_black(parent); rb_set_red(gparent); __rb_rotate_left(gparent, root); } } rb_set_black(root->rb_node); } static void __rb_erase_color(struct rb_node *node, struct rb_node *parent, struct rb_root *root) { struct rb_node *other; while ((!node || rb_is_black(node)) && node != root->rb_node) { if (parent->rb_left == node) { other = parent->rb_right; if (rb_is_red(other)) { rb_set_black(other); rb_set_red(parent); __rb_rotate_left(parent, root); other = parent->rb_right; } if ((!other->rb_left || rb_is_black(other->rb_left)) && (!other->rb_right || rb_is_black(other->rb_right))) { rb_set_red(other); node = parent; parent = rb_parent(node); } else { if (!other->rb_right || rb_is_black(other->rb_right)) { rb_set_black(other->rb_left); rb_set_red(other); __rb_rotate_right(other, root); other = parent->rb_right; } rb_set_color(other, rb_color(parent)); rb_set_black(parent); rb_set_black(other->rb_right); __rb_rotate_left(parent, root); node = root->rb_node; break; } } else { other = parent->rb_left; if (rb_is_red(other)) { rb_set_black(other); rb_set_red(parent); __rb_rotate_right(parent, root); other = parent->rb_left; } if ((!other->rb_left || rb_is_black(other->rb_left)) && (!other->rb_right || rb_is_black(other->rb_right))) { rb_set_red(other); node = parent; parent = rb_parent(node); } else { if (!other->rb_left || rb_is_black(other->rb_left)) { rb_set_black(other->rb_right); rb_set_red(other); __rb_rotate_left(other, root); other = parent->rb_left; } rb_set_color(other, rb_color(parent)); rb_set_black(parent); rb_set_black(other->rb_left); __rb_rotate_right(parent, root); node = root->rb_node; break; } } } if (node) rb_set_black(node); } void rb_erase(struct rb_node *node, struct rb_root *root) { struct rb_node *child, *parent; int color; if (!node->rb_left) child = node->rb_right; else if (!node->rb_right) child = node->rb_left; else { struct rb_node *old = node, *left; node = node->rb_right; while ((left = node->rb_left) != NULL) node = left; if (rb_parent(old)) { if (rb_parent(old)->rb_left == old) rb_parent(old)->rb_left = node; else rb_parent(old)->rb_right = node; } else root->rb_node = node; child = node->rb_right; parent = rb_parent(node); color = rb_color(node); if (parent == old) { parent = node; } else { if (child) rb_set_parent(child, parent); parent->rb_left = child; node->rb_right = old->rb_right; rb_set_parent(old->rb_right, node); } node->rb_parent_color = old->rb_parent_color; node->rb_left = old->rb_left; rb_set_parent(old->rb_left, node); goto color; } parent = rb_parent(node); color = rb_color(node); if (child) rb_set_parent(child, parent); if (parent) { if (parent->rb_left == node) parent->rb_left = child; else parent->rb_right = child; } else root->rb_node = child; color: if (color == RB_BLACK ) __rb_erase_color(child, parent, root); } /* * This function returns the first node (in sort order) of the tree. */ struct rb_node *rb_first(const struct rb_root *root) { struct rb_node *n; n = root->rb_node; if (!n) return NULL; while (n->rb_left) n = n->rb_left; return n; } struct rb_node *rb_last(const struct rb_root *root) { struct rb_node *n; n = root->rb_node; if (!n) return NULL; while (n->rb_right) n = n->rb_right; return n; } struct rb_node *rb_next(const struct rb_node *node) { struct rb_node *parent; if (rb_parent(node) == node) return NULL; /* If we have a right-hand child, go down and then left as far as we can. */ if (node->rb_right) { node = node->rb_right; while (node->rb_left) node = node->rb_left; return (struct rb_node *) node; } /* No right-hand children. Everything down and left is smaller than us, so any ‘next‘ node must be in the general direction of our parent. Go up the tree; any time the ancestor is a right-hand child of its parent, keep going up. First time it‘s a left-hand child of its parent, said parent is our ‘next‘ node. */ while ((parent = rb_parent(node)) && node == parent->rb_right) node = parent; return parent; } struct rb_node *rb_prev(const struct rb_node *node) { struct rb_node *parent; if (rb_parent(node) == node) return NULL; /* If we have a left-hand child, go down and then right as far as we can. */ if (node->rb_left) { node = node->rb_left; while (node->rb_right) node = node->rb_right; return (struct rb_node *) node; } /* No left-hand children. Go up till we find an ancestor which is a right-hand child of its parent */ while ((parent = rb_parent(node)) && node == parent->rb_left) node = parent; return parent; } void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root) { struct rb_node *parent = rb_parent(victim); /* Set the surrounding nodes to point to the replacement */ if (parent) { if (victim == parent->rb_left) parent->rb_left = new; else parent->rb_right = new; } else { root->rb_node = new; } if (victim->rb_left) rb_set_parent(victim->rb_left, new); if (victim->rb_right) rb_set_parent(victim->rb_right, new); /* Copy the pointers/colour from the victim to the replacement */ *new = *victim; }
若要使用上面的rbtree,需要根据需要实现自己的rbtree插入和查询函数。本博文实现如下:
//关联到红黑树的数据结构 struct int_rbtree { struct rb_node rbnode; int i; }; //红黑树最大节点数目 #define MAX_NUM 20 struct int_rbtree * int_search(struct rb_root *root, int key) { struct rb_node *node = root->rb_node; while (node) { struct int_rbtree *data = container_of(node, struct int_rbtree, rbnode); if (key < data->i) node = node->rb_left; else if (key > data->i) node = node->rb_right; else return data; } return NULL; } int int_insert(struct rb_root *root, struct int_rbtree *data) { struct rb_node **newnode = &(root->rb_node), *parent = NULL; /* Figure out where to put new node */ while (*newnode) { struct int_rbtree *thisnode = container_of(*newnode, struct int_rbtree, rbnode); parent = *newnode; if (data->i < thisnode->i) newnode = &((*newnode)->rb_left); else if (data->i > thisnode->i) newnode = &((*newnode)->rb_right); else return 0; } /* Add new node and rebalance tree. */ rb_link_node(&data->rbnode, parent, newnode); rb_insert_color(&data->rbnode, root); return 1; }
测试主程序
void testrbtree() { struct rb_node *node; // rb node struct rb_root root = RB_ROOT; //root node int i = 0; //insert for (i = 0; i < MAX_NUM; i = i + 2) { //分配节点,删除时需释放节点 struct int_rbtree *inttree = malloc(sizeof(struct int_rbtree)); memset(inttree, 0, sizeof(struct int_rbtree)); inttree->i = i; int res = int_insert(&root, inttree); if (res) { printf("insert %d succeed\n", i); } else { printf("insert %d failed\n", i); } } for (i = 1; i < MAX_NUM; i = i + 2) { struct int_rbtree *inttree = malloc(sizeof(struct int_rbtree)); memset(inttree, 0, sizeof(struct int_rbtree)); inttree->i = i; int res = int_insert(&root, inttree); if (res) { printf("insert %d succeed\n", i); } else { printf("insert %d failed\n", i); } } //travel printf("begin to travel tree\n"); for (node = rb_first(&root); node; node = rb_next(node)) { printf("key %d \n", rb_entry(node, struct int_rbtree, rbnode)->i); } printf("end to travel tree\n"); //delete srand(time(NULL)); int key = rand() % MAX_NUM; struct int_rbtree *data = int_search(&root, key); if (NULL != data) { rb_erase(&data->rbnode, &root); //删除时需释放节点 free(data); data = NULL; printf("is going to delete key %d \n", key); } else { printf("key %d is not in the tree\n", key); return; } data = int_search(&root, key); if (NULL != data) { printf("delete key %d failed\n", key); } else { printf("delete key %d succeed\n", key); } return; }
只要在main函数中调用这个测试函数即可。
同时,有需要的朋友可以从http://download.csdn.net/detail/it_pcode/6632917下载本博文代码。
原文:http://blog.csdn.net/pngynghay/article/details/21881369