首页 > 其他 > 详细

Minimum Path Sum

时间:2014-03-24 07:47:27      阅读:472      评论:0      收藏:0      [点我收藏+]

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

思路:典型的动态规划问题。result[i][j]表示(0,0)到(i,j)的最小值。result[i][j]=min(result[i][j-1],result[i-1][j])+grid[i][j];

bubuko.com,布布扣
class Solution {
public:
    int minPathSum(vector<vector<int> > &grid) {
        int m=grid.size();
        int n=grid[0].size();
        if(m==0||n==0)
            return 0;
        int result[m][n];
        for(int i=0;i<m;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(i==0)
                {
                    if(j==0)
                        result[i][j]=grid[i][j];
                    else
                        result[i][j]=result[i][j-1]+grid[i][j];
                }
                else
                {
                    if(j==0)
                        result[i][j]=result[i-1][j]+grid[i][j];
                    else
                        result[i][j]=min(result[i-1][j],result[i][j-1])+grid[i][j];
                }
            }
        }
        return result[m-1][n-1];
    }
};
bubuko.com,布布扣

Minimum Path Sum,布布扣,bubuko.com

Minimum Path Sum

原文:http://www.cnblogs.com/awy-blog/p/3619800.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!