2 10 3 5 10 3 10 3 3 2 5 3 6 7 10 5 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9
28 46 80
思路:这里用到费用流求解,首先添加一个超级源点s=0和超级汇点t=n*n+1,然后对每个点拆点, i 向 i` 连边,容量为1,花费为该点的权值mp[i][j],然后s与 1` 连边,容量为2,花费为0,n*n向t连边,容量为2,花费为0,最后矩阵中的点之间连边,容量为1,花费为0。最后答案为cost+mp[1][1]+mp[n][n]。注意数组的大小。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std;
const int MAXN = 2000; //注意数组的大小
const int MAXM = 100000;
struct Edge
{
int to,next,cap,flow,cost;
}edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N,n,m;
void init(int n)
{
N=n;
tol=0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int cap,int cost)
{
edge[tol].to=v;
edge[tol].cap=cap;
edge[tol].cost=cost;
edge[tol].flow=0;
edge[tol].next=head[u];
head[u]=tol++;
edge[tol].to=u;
edge[tol].cap=0;
edge[tol].cost=-cost;
edge[tol].flow=0;
edge[tol].next=head[v];
head[v]=tol++;
}
bool spfa(int s,int t)
{
queue<int>q;
for (int i=0;i<N;i++)
{
dis[i]=-INF;
vis[i]=false;
pre[i]=-1;
}
dis[s]=0;
vis[s]=true;
q.push(s);
while (!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for (int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if (edge[i].cap > edge[i].flow && dis[v] < dis[u] + edge[i].cost)
{
dis[v]=dis[u] + edge[i].cost;
pre[v]=i;
if (!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
if (pre[t]==-1) return false;
else return true;
}
int minCostMaxflow(int s,int t,int &cost)
{
int flow=0;
cost=0;
while (spfa(s,t))
{
int Min=INF;
for (int i=pre[t];i!=-1;i=pre[edge[i^1].to])
{
if (Min > edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
}
for (int i=pre[t];i!=-1;i=pre[edge[i^1].to])
{
edge[i].flow+=Min;
edge[i^1].flow-=Min;
cost+=edge[i].cost*Min;
}
flow+=Min;
}
return flow;
}
int mp[MAXN][MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/asus1/Desktop/IN.txt","r",stdin);
#endif
int i,j,t;
while (~sf(n))
{
init(2*n*n+2);
FRE(i,1,n)
FRE(j,1,n)
sf(mp[i][j]);
addedge(0,1+n*n,2,0);
addedge(n*n,2*n*n+1,2,0);
FRE(i,1,n)
FRE(j,1,n)
{
addedge((i-1)*n+j,(i-1)*n+j+n*n,1,mp[i][j]);
if (j+1<=n)
addedge((i-1)*n+n*n+j,(i-1)*n+j+1,1,0);
if (i+1<=n)
addedge((i-1)*n+j+n*n,i*n+j,1,0);
}
int cost;
int ans=minCostMaxflow(0,N-1,cost);
printf("%d\n",cost+mp[1][1]+mp[n][n]);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文:http://blog.csdn.net/u014422052/article/details/46763039