可能认识不够深,可能思绪还有点磕踫,但还是尽可能的将知识点传起来,我们的世界从未止步。
Google内部开发的BigTable是为跑在廉价的PC机上设计的。使用的是nosql型数据库(非关系型数据库)。BigTable 让Google在提供新服务时的运行成本降低,最大限度地利用了计算能力。BigTable 是建立在 GFS ,Scheduler ,Lock Service 和 MapReduce 之上的。
每个Table都是一个多维的稀疏图 sparse map(一个非常高效的内存hash_map实现)。Table 由行和列组成,并且每个存储单元 cell 都有一个时间戳。在不同的时间对同一个存储单元cell有多份拷贝,这样就可以记录数据的变动情况。在 Jeff Dean的例子中,行是URLs ,列可以定义一个名字,比如:contents。Contents 字段就可以存储文件的数据。或者列名是:”language”,可以存储一个“EN”的语言代码字符串。
Bigtable的键有三维,分别是行键(row key)、列键(column key)和时间戳(timestamp),行键和列键都是字节串,时间戳是64位整型;而值是一个字节串。可以用
(row:string, column:string, time:int64)→string 来表示一条键值对记录。(加强理解上一段话)
这种列存储广泛应用在搜索引擎和电商,不关心具体内容是什么,只要查出与你关键字匹配的索引(URL),google也是定时网络爬虫搜索其他各个网站的内容,存在时差性,为此做了个实验,我的博文突然修改开头的话时,我采用关键词匹配,百度第二个就是我的博文(不清除推酷总能第一时间转发博文,而且排在百度第一位,但是以前的似乎不多,近期开始的多),刷新查询,百度显示我的博文的开头,未发生改变
为了管理巨大的Table,把Table根据行分割(搜索引擎结果那么多页,存储在不同的tablets中),这些分割后的数据统称为:Tablets。每个Tablets大概有 100-200 MB,每个机器存储100个左右的 Tablets。底层的架构是:GFS。由于GFS是一种分布式的文件系统,采用Tablets的机制后,可以获得很好的负载均衡。比如:可以把经常响应的表移动到其他空闲机器上,然后快速重建。
Tablets在系统中的存储方式是不可修改的 immutable 的SSTables,一台机器一个日志文件。当系统的内存满后,系统会压缩一些Tablets。下面是一个大概的说明:
压缩分为:主要和次要的两部分。次要的压缩仅仅包括几个Tablets,而主要的压缩时关于整个系统的压缩。主压缩有回收硬盘空间的功能。Tablets的位置实际上是存储在几个特殊的BigTable的存储单元cell中。看起来这是一个三层的系统。
客户端有一个指向METAO的Tablets的指针。如果METAO的Tablets被频繁使用,那个这台机器就会放弃其他的tablets专门支持METAO这个Tablets。METAO tablets 保持着所有的META1的tablets的记录。这些tablets中包含着查找tablets的实际位置。在这个系统中不存在大的瓶颈,因为被频繁调用的数据已经被提前获得并进行了缓存。
现在我们返回到对列的说明:列是类似下面的形式: family:optional_qualifier。在他的例子中,行:www.search-analysis.com 也许有列:”contents:其中包含html页面的代码。 “ anchor:cnn.com/news” 中包含着 相对应的url,”anchor:www.search-analysis.com/” 包含着链接的文字部分。列中包含着类型信息。
注意这里说的是列信息,而不是列类型。列的信息是如下信息,一般是:属性/规则。 比如:保存n份数据的拷贝 或者 保存数据n天长等等。当 tablets 重新建立的时候,就运用上面的规则,剔出不符合条件的记录。由于设计上的原因,列本身的创建是很容易的,但是跟列相关的功能确实非常复杂的,比如上文提到的 类型和规则信息等。为了优化读取速度,列的功能被分割然后以组的方式存储在所建索引的机器上。这些被分割后的组作用于 列 ,然后被分割成不同的 SSTables。这种方式可以提高系统的性能,因为小的,频繁读取的列可以被单独存储,和那些大的不经常访问的列隔离开来。
再举个例子,Webtable表存储了大量的网页和相关信息。在Webtable,每一行存储一个网页,其反转的url作为行键,比如”com.google.maps“,反转的原因是为了让同一个域名下的子域名网页能聚集在一起。图1中的列族"anchor"保存了该网页的引用站点(比如引用了CNN主页的站点),qualifier是引用站点的名称,而数据是链接文本;列族"contents"保存的是网页的内容,这个列族只有一个空列"contents:"。图1中"contents:"列下保存了网页的三个版本,我们可以用("com.cnn.www",
"contents:", t5)来找到CNN主页在t5时刻的内容。
在一台机器上的所有的 tablets 共享一个log,在一个包含1亿的tablets的集群中,这将会导致非常多的文件被打开和写操作。新的log块经常被创建,一般是64M大小,这个GFS的块大小相等。当一个机器down掉后,控制机器就会重新发布他的log块到其他机器上继续进行处理。这台机器重建tablets然后询问控制机器处理结构的存储位置,然后直接对重建后的数据进行处理。
这个系统中有很多冗余数据,因此在系统中大量使用了压缩技术。他们使用不同版本的: BMDiff 和 Zippy 技术。
BMDiff 提供给他们非常快的写速度: 100MB/s – 1000MB/s 。Zippy 是和 LZW 类似的。Zippy 并不像 LZW 或者 gzip 那样压缩比高,但是他处理速度非常快。
Dean 还给了一个关于压缩 web 蜘蛛数据的例子。这个例子的蜘蛛 包含 2.1B 的页面,行按照以下的方式命名:“com.cnn.www/index.html:http”.在未压缩前的web page 页面大小是:45.1 TB ,压缩后的大小是:4.2 TB , 只是原来的 9.2%。Links 数据压缩到原来的 13.9% , 链接文本数据压缩到原来的 12.7%。
BigTable/MapReduce/GFS逐步了解;未完待续,布布扣,bubuko.com
BigTable/MapReduce/GFS逐步了解;未完待续
原文:http://blog.csdn.net/needkane/article/details/21987341