已经在代码中注释了变量含义,感觉不难
inf好像不止|1e9| inf设成0x3f 才过。。
#include <iostream> #include <fstream> #include <string> #include <time.h> #include <vector> #include <map> #include <queue> #include <algorithm> #include <stack> #include <cstring> #include <cmath> #include <set> #include <vector> using namespace std; template <class T> inline bool rd(T &ret) { char c; int sgn; if (c = getchar(), c == EOF) return 0; while (c != '-' && (c<'0' || c>'9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void pt(T x) { if (x <0) { putchar('-'); x = -x; } if (x>9) pt(x / 10); putchar(x % 10 + '0'); } typedef long long ll; typedef pair<int, int> pii; const int N = 500005; const int inf = 0x3f3f3f3f; inline int First(multiset<int>&x) { return *x.rbegin(); } inline int Second(multiset<int>&x) { multiset<int>::reverse_iterator it = x.rbegin(); it++; return *it; } inline void Erase(multiset<int>&x, int val) { x.erase(x.find(val)); } struct Node *null; struct Node { Node *fa, *ch[2]; int id; multiset<int>s[2];//s[0] this虚边所连的所有子树的连续白色点的最大值(不是链) int col; int ls[2], rs[2], siz, val; //ls[0]是对于这条链 最上端向下的连续白色点数 int Ls[2], Rs[2]; //Ls[0]是对于这棵子树 与最上端点相连的连续白色点的最大值 bool rev; inline void clear(int _col, int _val, int _id) { fa = ch[0] = ch[1] = null; siz = 1; rev = 0; id = _id; col = _col; val = _val; for (int i = 0; i < 2; i++) { ls[i] = rs[i] = 0; Ls[i] = Rs[i] = -inf; s[i].clear(); s[i].insert(-inf); } } inline void push_up() { if (this == null)return; siz = ch[0]->siz + ch[1]->siz + 1; for (int i = 0; i < 2; i++) { ls[i] = ch[0]->ls[i], rs[i] = ch[1]->rs[i]; Ls[i] = ch[0]->Ls[i], Rs[i] = ch[1]->Rs[i]; if (ch[0]->ls[i] == ch[0]->siz && i == col) { ls[i] = ch[0]->siz + 1 + ch[1]->ls[i]; Ls[i] = max(Ls[i], val); Ls[i] = max(Ls[i], First(s[i])); Ls[i] = max(Ls[i], ch[1]->Ls[i]); } if (ch[1]->rs[i] == ch[1]->siz && i == col) { rs[i] = ch[1]->siz + 1 + ch[0]->rs[i]; Rs[i] = max(Rs[i], val); Rs[i] = max(Rs[i], First(s[i])); Rs[i] = max(Rs[i], ch[0]->Rs[i]); } } } inline void push_down() { if (rev) { ch[0]->flip(); ch[1]->flip(); rev = 0; } } inline void setc(Node *p, int d) { ch[d] = p; p->fa = this; } inline bool d() { return fa->ch[1] == this; } inline bool isroot() { return fa == null || fa->ch[0] != this && fa->ch[1] != this; } inline void flip() { if (this == null)return; swap(ch[0], ch[1]); rev ^= 1; } inline void go() {//从链头开始更新到this if (!isroot())fa->go(); push_down(); } inline void rot() { Node *f = fa, *ff = fa->fa; int c = d(), cc = fa->d(); f->setc(ch[!c], c); this->setc(f, !c); if (ff->ch[cc] == f)ff->setc(this, cc); else this->fa = ff; f->push_up(); } inline Node*splay() { go(); while (!isroot()) { if (!fa->isroot()) d() == fa->d() ? fa->rot() : rot(); rot(); } push_up(); return this; } inline Node* access() {//access后this就是到根的一条splay,并且this已经是这个splay的根了 for (Node *p = this, *q = null; p != null; q = p, p = p->fa) { p->splay(); if (p->ch[1] != null) for (int i = 0;i < 2;i++) { p->s[i].insert(p->ch[1]->Ls[i]); } if (q != null) for (int i = 0; i < 2; i++) { Erase(p->s[i], q->Ls[i]); } p->setc(q, 1); p->push_up(); } return splay(); } inline Node* find_root() { Node *x; for (x = access(); x->push_down(), x->ch[0] != null; x = x->ch[0]); return x; } void make_root() { access()->flip(); } void cut() {//把这个点的子树脱离出去 access(); ch[0]->fa = null; ch[0] = null; push_up(); } void cut(Node *x) { if (this == x || find_root() != x->find_root())return; else { x->make_root(); cut(); } } void link(Node *x) { if (find_root() == x->find_root())return; else { make_root(); fa = x; } } }; Node pool[N], *tail; Node *node[N]; int n, q; struct Edge { int to, nex; }edge[N << 1]; int head[N], edgenum; void add(int u, int v) { Edge E = { v, head[u] }; edge[edgenum] = E; head[u] = edgenum++; } int col[N], val[N]; void dfs(int u, int fa) { for (int i = head[u]; ~i; i = edge[i].nex) { int v = edge[i].to; if (v == fa)continue; node[v]->fa = node[u]; dfs(v, u); for (int j = 0; j < 2; j++) { node[u]->s[j].insert(node[v]->Ls[j]); } } node[u]->push_up(); } int main() { while (cin >> n) { memset(head, -1, sizeof head); edgenum = 0; for (int i = 1, u, v; i < n; i++) { rd(u); rd(v); add(u, v);add(v, u); } tail = pool; null = tail++; null->clear(-1, -inf, 0); null->siz = 0; for (int i = 1; i <= n; i++) rd(col[i]); for (int i = 1; i <= n; i++) rd(val[i]); for (int i = 1; i <= n; i++) { node[i] = tail++; node[i]->clear(col[i], val[i], i); } dfs(1, 1); rd(q); int u, v, w; while (q--) { rd(u); rd(v); if (0 == u) { node[v]->access(); pt(max(node[v]->Rs[0], node[v]->Rs[1])); puts(""); } else if (1 == u) { node[v]->access(); node[v]->col ^= 1; node[v]->push_up(); } else { rd(w); node[v]->access(); node[v]->val = w; node[v]->push_up(); } } } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文:http://blog.csdn.net/qq574857122/article/details/46877127