首页 > 其他 > 详细

POJ 2337 有向图的欧拉路径

时间:2014-03-25 23:03:48      阅读:492      评论:0      收藏:0      [点我收藏+]
Catenyms
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8857   Accepted: 2336

Description

A catenym is a pair of words separated by a period such that the last letter of the first word is the same as the last letter of the second. For example, the following are catenyms:
dog.gopher

gopher.rat

rat.tiger

aloha.aloha

arachnid.dog

A compound catenym is a sequence of three or more words separated by periods such that each adjacent pair of words forms a catenym. For example,

aloha.aloha.arachnid.dog.gopher.rat.tiger

Given a dictionary of lower case words, you are to find a compound catenym that contains each of the words exactly once.

Input

The first line of standard input contains t, the number of test cases. Each test case begins with 3 <= n <= 1000 - the number of words in the dictionary. n distinct dictionary words follow; each word is a string of between 1 and 20 lowercase letters on a line by itself.

Output

For each test case, output a line giving the lexicographically least compound catenym that contains each dictionary word exactly once. Output "***" if there is no solution.

Sample Input

2
6
aloha
arachnid
dog
gopher
rat
tiger
3
oak
maple
elm

Sample Output

aloha.arachnid.dog.gopher.rat.tiger
***


单词接龙,形成欧拉路径。

计算方法:

(1)  在输入词典的同时构造有向图G,计算每一个节点所在的入度和并查集所在的根,

(2)将边按照字典序排列。

(3) 按照递增顺序搜索每一个节点,若相邻两个节点属于不同的并查集,则说明图无法按照字典序形成若连通图,有向欧拉路径不存在。否则进行4

(4) 按照递增顺序搜索每一个节点,若存在入度出度相差大于1的节点,则有向图欧拉路径不存在,否则,若所有的节点出入度相同,则选择序号最下的节点

作为欧拉回路的起点,若存在一个出度比入度大一的顶点,则该节点作为有向欧拉路径的起点,

(5)从S出发dfs计算有向图欧拉路径

代码:

/* ***********************************************
Author :rabbit
Created Time :2014/3/25 19:03:35
File Name :12.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pi acos(-1.0)
typedef long long ll;
const int maxn=1100;
struct node{
	int u,v;
	string name;
}road[maxn];
int n,S,stop,t;
bool cmp(node a,node b){
	return a.name<b.name;
}
bool app[30],use[maxn];
int in[30],out[30],fa[40],s[maxn];
int find(int x){
	if(fa[x]==0)return x;
	fa[x]=find(fa[x]);
		return fa[x];
}
bool euler(){
	int t=0;
	for(int i=1;i<=26;i++)
		if(app[i]){
			if(t==0)t=find(i);
			if(find(i)!=t)return 0;
		}
	int sum=0;
	S=0;
	for(int i=1;i<=26;i++)
		if(app[i]){
			if(in[i]!=out[i]){
				if(abs(in[i]-out[i])>1)return 0;
				sum++;
				if(out[i]>in[i])S=i;
			}
		}
	if(sum==0){
		for(int i=1;i<26;i++)
			if(app[i]){
				S=i;
				break;
			}
	}
	return 1;
}
void dfs(int now){
	for(int i=1;i<=n;i++)
		if(!use[i]&&road[i].u==now){
			use[i]=1;
			dfs(road[i].v);
			s[++stop]=i;
		}
}
int main()
{
     //freopen("data.in","r",stdin);
     //freopen("data.out","w",stdout);
	 int T;
	 cin>>T;
     while(T--){
		 cin>>n;
		 memset(in,0,sizeof(in));
		 memset(out,0,sizeof(out));
		 memset(fa,0,sizeof(fa));
		 memset(app,0,sizeof(app));
		 for(int i=1;i<=n;i++){
		 cin>>road[i].name;
		    road[i].u=road[i].name[0]-‘a‘+1;
		    road[i].v=road[i].name[road[i].name.length()-1]-‘a‘+1;
		    app[road[i].u]=1;
		    app[road[i].v]=1;
		    int u=find(road[i].u);
		    int v=find(road[i].v);
		    if(u!=v)fa[u]=v;
		    out[road[i].u]++;in[road[i].v]++;
		 }
		 sort(road+1,road+n+1,cmp);
		 if(!euler()){
			 puts("***");
			 continue;
		 }
		 stop=0;
		 memset(use,0,sizeof(use));
		 dfs(S);
		 for(int i=stop;i>=2;i--)cout<<road[s[i]].name<<‘.‘;
		 cout<<road[s[1]].name<<endl;
	 }
     return 0;
}


POJ 2337 有向图的欧拉路径,布布扣,bubuko.com

POJ 2337 有向图的欧拉路径

原文:http://blog.csdn.net/xianxingwuguan1/article/details/22090641

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!