首页 > 移动平台 > 详细

HDU 5303 Delicious Apples (贪心 枚举 好题)

时间:2015-07-24 01:31:51      阅读:262      评论:0      收藏:0      [点我收藏+]


Delicious Apples

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)

Total Submission(s): 199    Accepted Submission(s): 54

Problem Description
There are n apple trees planted along a cyclic road, which is L metres long. Your storehouse is built at position 0 on that cyclic road.
The ith tree is planted at position xi, clockwise from position 0. There are ai delicious apple(s) on the ith tree.

You only have a basket which can contain at most K apple(s). You are to start from your storehouse, pick all the apples and carry them back to your storehouse using your basket. What is your minimum distance travelled?

1n,k105,ai1,a1+a2+...+an105
1L109
0x[i]L

There are less than 20 huge testcases, and less than 500 small testcases.
 

Input
First line: t, the number of testcases.
Then t testcases follow. In each testcase:
First line contains three integers, L,n,K.
Next n lines, each line contains xi,ai.
 

Output
Output total distance in a line for each testcase.
 

Sample Input
2 10 3 2 2 2 8 2 5 1 10 4 1 2 2 8 2 5 1 0 10000
 

Sample Output
18 26
 

Source
2015 Multi-University Training Contest 2

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5303

题目大意:有一个长为L的环,n个苹果树,一个篮子最多装k个苹果,装完要回到起点卸下再出发,给出n个苹果树顺时针的位置及苹果的个数,求摘完所有苹果走的最小路程

题目分析:显然,只有在某种特殊条件下,即两侧都还有苹果且可以一次装完且最后的苹果都离起点比较远,这种情况下,我们直接绕圈可能会更优,也就是说整圈最多绕一次,因此我们可以先对两边贪心,题目的数据显示苹果的数量最多就1e5,显然我们可以把苹果“离散”出来,用x[i]记录第i个苹果到起点的位置,然后对位置从小到大排序,先选择路程小的,选择的时候用dis[i]记录单侧装了i个苹果的最小路程,类似背包计数的原来,答案要乘2,因为是来回的,最后在k>=i时,枚举绕整圈的情况,szl-i表示只走左边采的苹果数,szr - (k - i)表示只走右边采的苹果树,画个图就能看出来了,注意右边这里可能值为负,要和0取最大,然后答案就是(disl[szl-i] + disr[szr - (k - i)])* 2 +L,这里其实画图更加直观。最后取最小即可,注意有几个wa点,一个是要用long long,二是之前说的出现负数和0取大,三是每次要清零


#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#define ll long long
using namespace std;
int const MAX = 1e5 + 5;
int  L, n, k;
ll x[MAX], disl[MAX], disr[MAX];
vector <ll> l, r;

int main()
{
    int T;
    scanf("%d", &T);
    while(T--)
    {
        memset(disl, 0, sizeof(disl));
        memset(disr, 0, sizeof(disr));
        l.clear();
        r.clear();
        scanf("%d %d %d", &L, &n, &k);
        int cnt = 1;
        for(int i = 1; i <= n; i++) 
        {
            ll pos, num;
            scanf("%lld %lld", &pos, &num);
            for(int j = 1; j <= num; j++)
                x[cnt ++] = (ll) pos;   //离散操作
        }
        cnt --;
        for(int i = 1; i <= cnt; i++)
        {
            if(2 * x[i] < L)
                l.push_back(x[i]);
            else
                r.push_back(L - x[i]);  //记录位置
        }   
        sort(l.begin(), l.end());
        sort(r.begin(), r.end());
        int szl = l.size(), szr = r.size();
        for(int i = 0; i < szl; i++)
            disl[i + 1] = (i + 1 <= k ? l[i] : disl[i + 1 - k] + l[i]);
        for(int i = 0; i < szr; i++)
            disr[i + 1] = (i + 1 <= k ? r[i] : disr[i + 1 - k] + r[i]);
        ll ans = (disl[szl] + disr[szr]) * 2;
        for(int i = 0; i <= szl && i <= k; i++)
        {
            int p1 = szl - i;
            int p2 = max(0, szr - (k - i));
            ans = min(ans, 2 * (disl[p1] + disr[p2]) + L);
        }
        printf("%I64d\n", ans);
    }
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

HDU 5303 Delicious Apples (贪心 枚举 好题)

原文:http://blog.csdn.net/tc_to_top/article/details/47031071

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!