首页 > 其他 > 详细

Guided Image Filtering

时间:2014-01-21 09:59:11      阅读:529      评论:0      收藏:0      [点我收藏+]

1,定义

引导滤波:即需要引导图的滤波器,引导图可以是单独的图像或者是输入图像,当引导图为输入图像时,引导滤波就成为一个保持边缘的滤波操作,可以用于图像重建的滤波。

引导滤波的流程见下图:

bubuko.com,布布扣

假设输入图像为p,输出图像为q,引导图为IqI在以像素k为中心的窗口中存在局部线性关系:

bubuko.com,布布扣

窗口半径为rab为线性系数,且在局部窗口k中为常数。这个模型保证了只有在I存在边缘的情况下,q才会存在边缘。这是因为:bubuko.com,布布扣。这与在去雾、超分辨率、抠图等研究中使用的模型是一致的。

qp去除噪声或者纹理之后的图像:

bubuko.com,布布扣

为确定以上公式中的线性系数,并满足使得qp的差别最小,转化为最优化问题:

bubuko.com,布布扣

以上公式的求解可以利用线性回归:

bubuko.com,布布扣

在这里, μkσk^2表示I在局部窗口wk中的均值和方差。 |ω|是窗口内的像素数,pk表示p在窗口wk中的均值。当求的akbk后:

bubuko.com,布布扣

其中bubuko.com,布布扣,bubuko.com,布布扣

算法流程:f为一个窗口半径为r的均值滤波器,corr为相关,var为方差,cov为协方差。

bubuko.com,布布扣

2,边缘保持

I=P时,引导滤波就变成了边缘保持的滤波操作,此时:

bubuko.com,布布扣bubuko.com,布布扣

考虑两种情况:

 

bubuko.com,布布扣

即在高方差区域,保持值不变,在平滑区域,使用临近像素平均。

3,彩色滤波

直观的方法就是直接将引导滤波应用到三个颜色通道中(RGB):

bubuko.com,布布扣

bubuko.com,布布扣

 

 取值:i=123

4,简单示例

下载作者代码后,有两个主要函数:guidedfilter.m(灰度图像)和guidedfilter_color.m(彩色图像),随便取一副图像进行边缘保持滤波:

I = double(imread(‘.\img_smoothing\cat.bmp‘)) / 255;

p = I;

r = 4; % try r=2, 4, or 8

eps = 0.2^2; % try eps=0.1^2, 0.2^2, 0.4^2

 

q = guidedfilter(I, p, r, eps);

 

figure();

imshow([I, q], [0, 1]);

结果图:

bubuko.com,布布扣

5,一些资源

项目主页:http://research.microsoft.com/en-us/um/people/kahe/eccv10/index.html

 

http://blog.csdn.net/kaikaicheng/article/details/8108474

同时作者提供了代码和ppt可供参考,也可从博主资源中下载。

http://download.csdn.net/detail/u010736419/6840011

http://download.csdn.net/detail/u010736419/6840015

http://download.csdn.net/detail/u010736419/6840025

 

相关论文:

 

Guided Image Filtering

原文:http://blog.csdn.net/wushanyun1989/article/details/18225259

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!