首页 > 其他 > 详细

scikit-learn:4.4. Unsupervised dimensionality reduction(降维)

时间:2015-07-26 12:46:34      阅读:315      评论:0      收藏:0      [点我收藏+]

参考:http://scikit-learn.org/stable/modules/unsupervised_reduction.html


对于高维features,常常需要在supervised之前unsupervised dimensionality reduction。



下面三节的翻译会在之后附上。

4.4.1. PCA: principal component analysis

decomposition.PCA looks for a combination of features that capture well the variance of the original features. See Decomposing signals in components (matrix factorization problems). 翻译文章参考:http://blog.csdn.net/mmc2015/article/details/46867597

4.4.2. Random projections

The module: random_projection provides several toolsfor data reduction by random projections. See the relevant section of the documentation: Random Projection.

4.4.3. Feature agglomeration(特征集聚)

cluster.FeatureAgglomeration applies Hierarchical clustering to group together features that behave similarly.

Feature scaling

Note that if features have very different scaling or statistical properties, cluster.FeatureAgglomeration may not be able to capture the links between related features. Using a preprocessing.StandardScaler can be useful in these settings.



Pipelining:The unsupervised data reduction and the supervised estimator can be chained in one step. See Pipeline: chaining estimators.


版权声明:本文为博主原创文章,未经博主允许不得转载。

scikit-learn:4.4. Unsupervised dimensionality reduction(降维)

原文:http://blog.csdn.net/mmc2015/article/details/47066239

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!