首页 > 其他 > 详细

我也说说中文分词(上:基于字符串匹配)

时间:2014-03-29 13:17:28      阅读:595      评论:0      收藏:0      [点我收藏+]

1. 序

词是句子组成的基本单元,不想英语句子已经分好词了,中文处理的第一步就是中文分词。

分词中面临的三大基本问题

  1. 分词规范
  2. 分词歧义
  3. 未登录词的识别

中文分词算法大概分为两大类
第一类:基于字符串匹配

    即扫描字符串,如果发现字符串的子串和词相同,就算匹配。这类分词通常会加入一些启发式规则,比如“正向/反向最大匹配”, “长词优先” 等策略。

优点:速度块,都是O(n)时间复杂度,实现简单,效果尚可
缺点:就是对歧义和未登录词处理不好
案例:庖丁解牛分词器就是基于字符串匹配的分词。

  • 歧义的例子很简单"长春市/长春/药店"、 "长春/市长/春药/店"
  • 未登录词即词典中没有出现的词,当然也就处理不好

第二类:基于统计以及机器学习的分词方式

      这类分词基于人工标注的词性和统计特征,对中文进行建模,即根据观测到的数据(标注好的语料)对模型参数进行估计,即训练。 在分词阶段再通过模型计算各种分词出现的概率,将概率最大的分词结果作为最终结果。常见的序列标注模型有HMM和CRF。

优点:很好处理歧义和未登录词问题,效果比基于字符串匹配效果好
缺点:需要大量的人工标注数据,较慢的分词速度
案例:Stanford Word Segmenter

 

2. 基于字符串匹配的中文分词(以前向最大匹配为例)

bubuko.com,布布扣

参考代码

bubuko.com,布布扣
def WordSeg(Inputfile, Outputfile):
    f = file(Inputfile)
    w = file(Outputfile, w)
    for line in f:
        line = line.strip().decode(utf-8)
        senList = []
        newsenList = []
        tmpword = ‘‘
        for i in range(len(line)):
            if line[i] in StopWord:
                senList.append(tmpword)
                senList.append(line[i])
                tmpword = ‘‘
            else:
                tmpword += line[i]
                if i == len(line) - 1:
                    senList.append(tmpword)
        #Pre
        for key in senList:
            if key in StopWord:
                newsenList.append(key)
            else:
                tmplist = PreSenSeg(key, span)
                for keyseg in tmplist:
                    newsenList.append(keyseg)
        Prewriteline = ‘‘
        for key in newsenList:
            Prewriteline = Prewriteline + key +  

        w.write(Prewriteline.encode(utf-8) + \n)
    f.close()
    w.close()

def PreSenSeg(sen, span):
    post = span
    if len(sen) < span:
        post = len(sen)
    cur = 0
    revlist = []
    while 1:
        if cur >= len(sen):
            break
        s = re.search(u"^[0|1|2|3|4|5|6|7|8|9|\uff11|\uff12|\uff13|\uff14|\uff15|\uff16|\uff17|\uff18|\uff19|\uff10|\u4e00|\u4e8c|\u4e09|\u56db|\u4e94|\u516d|\u4e03|\u516b|\u4e5d|\u96f6|\u5341|\u767e|\u5343|\u4e07|\u4ebf|\u5146|\uff2f]+", sen[cur:])
        if s:
            if s.group() != ‘‘:
                revlist.append(s.group())
            cur = cur + len(s.group()) 
            post = cur + span
            if post > len(sen):
                post = len(sen)
        s = re.search(u"^[a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|\uff41|\uff42|\uff43|\uff44|\uff45|\uff46|\uff47|\uff48|\uff49|\uff47|\uff4b|\uff4c|\uff4d|\uff4e|\uff4f|\uff50|\uff51|\uff52|\uff53|\uff54|\uff55|\uff56|\uff57|\uff58|\uff59|\uff5a|\uff21|\uff22|\uff23|\uff24|\uff25|\uff26|\uff27|\uff28|\uff29|\uff2a|\uff2b|\uff2c|\uff2d|\uff2e|\uff2f|\uff30|\uff31|\uff32|\uff33|\uff35|\uff36|\uff37|\uff38|\uff39|\uff3a]+", sen[cur:])
        if s:
            if s.group() != ‘‘:
                revlist.append(s.group())
            cur = cur + len(s.group()) 
            post = cur + span
            if post > len(sen):
                post = len(sen)
        if (WordDic.has_key(sen[cur:post])) or (cur + 1 == post):
            if sen[cur:post] != ‘‘:
                revlist.append(sen[cur:post])
            cur = post
            post = post + span
            if post > len(sen):
                post = len(sen)
        else:
            post -= 1    
    return revlist 
bubuko.com,布布扣

注意几点

  1. 首先根据标点切开分成小句子,标点绝对是分割的最佳标志。
  2. 句子中的数字(阿拉伯、汉字、阿拉伯+汉字。注意有十白千万亿)自动检测出来,不用再切割了。比如1998年=>1998 年
  3. 句子中的英文单词直接识别出来,不用分割了。比如:Happy New Year。

后向最大匹配与前向思路相同,只不过切分方向是从后往前。

 

3. 利用N-gram进行中文分词

      语言模型是根据语言客观事实而进行的语言抽象数学建模,是一种对应关系。语言模型与语言客观事实之间的关系,如同数学上的抽象直线与具体直线之间的关系。

N-gram

      语言模型在自然语言处理中占有重要地位,尤其是在基于统计模型的NLP任务中得到了广泛的应用,目前主要采用的是n元愈发模型(N-gram model),这种模型构建简单、直接,但同时也因为数据缺乏而必须采取平滑算法。

      一个语言模型通常构建为字符串s的概率分布p(s),p(s)试图反映字符串s作为一个句子出现时的频率。例如一个人所说的100个句子中大约有一句是“OK”,那么可以任务P(OK)=0.01。而对于句子“the apple eat an chicken”,可以认为其概率为0,因为几乎没有人这么说。与语言学不同,语言模型与句子是否合乎语法没有关系。对于字串假设有l个基元(基元可以是字、词、短语等)组成句子,那么s = w1w2...wl,其概率计算公式为:

       p(s)=p(w1)p(w2|w1)p(w3|w1w2).......p(wl|w1w2...pl-1),把第i个词wi之前的词w1w2....wi-1成为wi的“历史”。随着历史长度的增加,不同的历史数目成指数增长。如果历史长度为i-1,那么就有Li-1种不同的历史(L为词汇集的大小),这样必须在所有历史的基础上得出产生第i个词的概率。这样不可能从训练数据中正确估计出(wi|w1w2...wi-1),并且很多历史不可能从训练数据中出现。其中一种比较实际的做法基于这样的假设:第n个词的出现只与前面n-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。常用的是二元的Bi-Gram(只与前一个词有关)和三元的Tri-Gram(只与前两个词有关)。

二元模型为例

p(s) = p(w1|<BEG>)p(w2|w1)p(w3|w2)*****p(wl|wl-1)p(<End>|wl)

其中p(wi|wi-1) = p(wi-1wi)/p(wi-1*)

      前边已经利用前向最大匹配和后向最大匹配对句子进行了中文分词。为了提高分词的准确度,可以利用N-gram比较前向、后向哪个分词的得到的概率结果更大,就取相应的分词结果。

 

4. 小试牛刀

1. 前向后向中文分词

数据下载:待分词文件+对应答案+词典

代码

bubuko.com,布布扣
#! -*- coding:utf-8 -*-
import sys
import os
import re
#StopWordtmp = [‘。‘, ‘,‘, ‘!‘, ‘?‘, ‘:‘, ‘“‘, ‘”‘, ‘‘‘, ‘’‘, ‘(‘, ‘)‘, ‘【‘, ‘】‘, ‘{‘, ‘}‘, ‘-‘, ‘-‘, ‘~‘, ‘[‘, ‘]‘, ‘〔‘, ‘〕‘, ‘.‘, ‘@‘, ‘¥‘, ‘?‘, ‘.‘]
StopWordtmp = [ , u\u3000, u\x30fb, u\u3002, u\uff0c, u\uff01, u\uff1f, u\uff1a, u\u201c, u\u201d, u\u2018, u\u2019, u\uff08, u\uff09, u\u3010, u\u3011, u\uff5b, u\uff5d, u-, u\uff0d, u\uff5e, u\uff3b, u\uff3d, u\u3014, u\u3015, u\uff0e, u\uff20, u\uffe5, u\u2022, u.]

WordDic = {}
StopWord = []
span = 16

def InitStopword():
    for key in StopWordtmp:
        StopWord.append(key)

def InitDic(Dicfile):
    f = file(Dicfile)
    for line in f:
        line = line.strip().decode(utf-8)
        WordDic[line] = 1;
    f.close()
    print len(WordDic)
    print "Dictionary has built down!"

def WordSeg(Inputfile, Outputfile, outputfile2):
    f = file(Inputfile)
    w = file(Outputfile, w)
    w2 = file(Outputfile2, w)
    for line in f:
        line = line.strip().decode(utf-8)
        senList = []
        newsenList = []
        tmpword = ‘‘
        for i in range(len(line)):
            if line[i] in StopWord:
                senList.append(tmpword)
                senList.append(line[i])
                tmpword = ‘‘
            else:
                tmpword += line[i]
                if i == len(line) - 1:
                    senList.append(tmpword)
        #Pre
        for key in senList:
            if key in StopWord:
                newsenList.append(key)
            else:
                tmplist = PreSenSeg(key, span)
                for keyseg in tmplist:
                    newsenList.append(keyseg)
        Prewriteline = ‘‘
        for key in newsenList:
            Prewriteline = Prewriteline + key +  

        #Post
        newsenList = []
        for key in senList:
            if key in StopWord:
                newsenList.append(key)
            else:
                tmplist = PostSenSeg(key, span)
                for keyseg in tmplist:
                    newsenList.append(keyseg)
        Postwriteline = ‘‘
        for key in newsenList:
            Postwriteline = Postwriteline + key +  
        Postwriteline = Postwriteline.strip( )

        w.write(Prewriteline.encode(utf-8) + \n)
        w2.write(Postwriteline.encode(utf-8) + \n)
    f.close()
    w.close()
    w2.close()

def PreSenSeg(sen, span):
    post = span
    if len(sen) < span:
        post = len(sen)
    cur = 0
    revlist = []
    while 1:
        if cur >= len(sen):
            break
        s = re.search(u"^[0|1|2|3|4|5|6|7|8|9|\uff11|\uff12|\uff13|\uff14|\uff15|\uff16|\uff17|\uff18|\uff19|\uff10|\u4e00|\u4e8c|\u4e09|\u56db|\u4e94|\u516d|\u4e03|\u516b|\u4e5d|\u96f6|\u5341|\u767e|\u5343|\u4e07|\u4ebf|\u5146|\uff2f]+", sen[cur:])
        if s:
            if s.group() != ‘‘:
                revlist.append(s.group())
            cur = cur + len(s.group()) 
            post = cur + span
            if post > len(sen):
                post = len(sen)
        s = re.search(u"^[a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|\uff41|\uff42|\uff43|\uff44|\uff45|\uff46|\uff47|\uff48|\uff49|\uff47|\uff4b|\uff4c|\uff4d|\uff4e|\uff4f|\uff50|\uff51|\uff52|\uff53|\uff54|\uff55|\uff56|\uff57|\uff58|\uff59|\uff5a|\uff21|\uff22|\uff23|\uff24|\uff25|\uff26|\uff27|\uff28|\uff29|\uff2a|\uff2b|\uff2c|\uff2d|\uff2e|\uff2f|\uff30|\uff31|\uff32|\uff33|\uff35|\uff36|\uff37|\uff38|\uff39|\uff3a]+", sen[cur:])
        if s:
            if s.group() != ‘‘:
                revlist.append(s.group())
            cur = cur + len(s.group()) 
            post = cur + span
            if post > len(sen):
                post = len(sen)
        if (WordDic.has_key(sen[cur:post])) or (cur + 1 == post):
            if sen[cur:post] != ‘‘:
                revlist.append(sen[cur:post])
            cur = post
            post = post + span
            if post > len(sen):
                post = len(sen)
        else:
            post -= 1    
    return revlist 

def PostSenSeg(sen, span):
    cur = len(sen)
    pre = cur -  span 
    if pre < 0:
        pre = 0
    revlist = []
    while 1:
        if cur <= 0:
            break
        s = re.search(u"[0|1|2|3|4|5|6|7|8|9|\uff11|\uff12|\uff13|\uff14|\uff15|\uff16|\uff17|\uff18|\uff19|\uff10|\u4e00|\u4e8c|\u4e09|\u56db|\u4e94|\u516d|\u4e03|\u516b|\u4e5d|\u96f6|\u5341|\u767e|\u5343|\u4e07|\u4ebf|\u5146|\uff2f]+$", sen[pre:cur])
        if s:
            if s.group() != ‘‘:
                revlist.append(s.group())
            cur = cur - len(s.group()) 
            pre = cur - span
            if pre < 0:
                pre = 0
        s = re.search(u"^[a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|\uff41|\uff42|\uff43|\uff44|\uff45|\uff46|\uff47|\uff48|\uff49|\uff47|\uff4b|\uff4c|\uff4d|\uff4e|\uff4f|\uff50|\uff51|\uff52|\uff53|\uff54|\uff55|\uff56|\uff57|\uff58|\uff59|\uff5a|\uff21|\uff22|\uff23|\uff24|\uff25|\uff26|\uff27|\uff28|\uff29|\uff2a|\uff2b|\uff2c|\uff2d|\uff2e|\uff2f|\uff30|\uff31|\uff32|\uff33|\uff35|\uff36|\uff37|\uff38|\uff39|\uff3a]+", sen[pre:cur])
        if s:
            if s.group() != ‘‘:
                revlist.append(s.group())
            cur = cur - len(s.group()) 
            pre = cur - span
            if pre < 0:
                pre = 0

        if (WordDic.has_key(sen[pre:cur])) or (cur - 1 == pre):
            if sen[pre:cur] != ‘‘:
                revlist.append(sen[pre:cur])
            cur = pre
            pre = pre - span
            if pre < 0:
                pre = 0
        else:
            pre += 1    
    return revlist[::-1] 

if __name__ == "__main__":
    if len(sys.argv) != 5:
        print("Usage: python wordseg.py Dicfile Inputfile Outfile")
    Dicfile = sys.argv[1]
    Inputfile = sys.argv[2]
    Outputfile = sys.argv[3]
    Outputfile2 = sys.argv[4]
    InitDic(Dicfile)
    InitStopword()
    WordSeg(Inputfile, Outputfile, Outputfile2)
View Code

对比前向后向结果

bubuko.com,布布扣

评测指标

正确率 = 正确识别的个体总数 /  识别出的个体总数

召回率 = 正确识别的个体总数 /  测试集中存在的个体总数

F值  = 正确率 * 召回率 * 2 / (正确率 + 召回率)

评测程序

bubuko.com,布布扣
from __future__ import division
import os
import sys
import linecache
if __name__ == "__main__":
    if len(sys.argv) != 3:
        print "Usage: python evaluate.py inputfile goldfile"
        exit(0)
    infile = sys.argv[1]
    goldfile = sys.argv[2]
    count = 1
    count_right = 0
    count_split = 0
    count_gold = 0
    f = file(infile)
    for line in f:
        inlist = line.strip().decode(utf-8).split( )
        goldlist = linecache.getline(goldfile, count).strip().decode(utf-8).split( )
        count += 1
        count_split += len(inlist)
        count_gold += len(goldlist)
        tmp_in = inlist
        tmp_gold = goldlist 
        for key in tmp_in:
            if key in tmp_gold:
                count_right += 1
                tmp_gold.remove(key)
    f.close()
    print "count_right", count_right
    print "count_gold", count_gold
    print "count_split", count_split

    p = count_right / count_split
    r = count_right / count_gold
    F = 2 * p * r /(p + r) 
    print "p:", p
    print "r:", r
    print "F:", F

        
bubuko.com,布布扣

结果

bubuko.com,布布扣

 

2. N-gram中文分词

 数据下载:训练数据集+测试+答案+字典+评测程序+N-gram分词

参考代码

bubuko.com,布布扣
def WordSeg(Inputfile, Outputfile):
    f = file(Inputfile)
    w = file(Outputfile, w)
    dic_size = 0
    for key in StatisticDic:
        for keys in StatisticDic[key]:
            dic_size += StatisticDic[key][keys]
    for line in f:
        line = line.strip().decode(utf-8)
        senList = []
        newsenList = []
        tmpword = ‘‘
        for i in range(len(line)):
            if line[i] in StopWord:
                senList.append(tmpword)
                senList.append(line[i])
                tmpword = ‘‘
            else:
                tmpword += line[i]
                if i == len(line) - 1:
                    senList.append(tmpword)
        #N-gram
        for key in senList:
            if key in StopWord:
                newsenList.append(key)
            else:
                Pretmplist = PreSenSeg(key, span)
                Posttmplist = PostSenSeg(key, span)
                tmp_pre = P(Pretmplist, dic_size)
                tmp_post = P(Posttmplist, dic_size)
                tmplist = []
                if tmp_pre > tmp_post:
                    tmplist = Pretmplist 
                else:
                    tmplist = Posttmplist
#print tmplist, tmplist
                for keyseg in tmplist:
                    newsenList.append(keyseg)
        writeline = ‘‘
        for key in newsenList:
            writeline = writeline + key +   
        writeline = writeline.strip(  )
        w.write(writeline.encode(utf-8) + \n)
#break

    f.close()
    w.close()
bubuko.com,布布扣

分词结果

bubuko.com,布布扣

可以看出结果不如前向切分,但高于后向切分。原因是没有采取平滑策略,利用+1平滑后结果变为

bubuko.com,布布扣

结果超过前向、后向切分,说明有效。

我也说说中文分词(上:基于字符串匹配),布布扣,bubuko.com

我也说说中文分词(上:基于字符串匹配)

原文:http://www.cnblogs.com/kaituorensheng/p/3629729.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!