想和数据挖掘沾点边,所以最近在复习一些算法,因为又学了点R,深感这是个统计分析挖掘的利器,所以想用R实现一些挖掘算法。
朴素贝叶斯法大概是最简单的一种挖掘算法了,《统计学习方法》在第四章做了很详细的叙述,无非是对于输入特征x,利用通过学习得到的模型计算后验概率分布,将后验概率最大的分类作为输出。
根据贝叶斯定理,后验概率P(Y=cx | X=x) = 条件概率P(X=x | Y=cx) * 先验概率P(Y = ck) / P(X=x),取P(X=x | Y=cx) * P(Y = ck)最大的分类作为输出。
下面是一个小数据集下使用R进行朴素贝叶斯分类的例子,参考自博客,代码如下:
#构造训练集 data <- matrix(c("sunny","hot","high","weak","no", "sunny","hot","high","strong","no", "overcast","hot","high","weak","yes", "rain","mild","high","weak","yes", "rain","cool","normal","weak","yes", "rain","cool","normal","strong","no", "overcast","cool","normal","strong","yes", "sunny","mild","high","weak","no", "sunny","cool","normal","weak","yes", "rain","mild","normal","weak","yes", "sunny","mild","normal","strong","yes", "overcast","mild","high","strong","yes", "overcast","hot","normal","weak","yes", "rain","mild","high","strong","no"), byrow = TRUE, dimnames = list(day = c(), condition = c("outlook","temperature", "humidity","wind","playtennis")), nrow=14, ncol=5); #计算先验概率 prior.yes = sum(data[,5] == "yes") / length(data[,5]); prior.no = sum(data[,5] == "no") / length(data[,5]); #模型 naive.bayes.prediction <- function(condition.vec) { # Calculate unnormlized posterior probability for playtennis = yes. playtennis.yes <- sum((data[,1] == condition.vec[1]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(outlook = f_1 | playtennis = yes) sum((data[,2] == condition.vec[2]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(temperature = f_2 | playtennis = yes) sum((data[,3] == condition.vec[3]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(humidity = f_3 | playtennis = yes) sum((data[,4] == condition.vec[4]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(wind = f_4 | playtennis = yes) prior.yes; # P(playtennis = yes) # Calculate unnormlized posterior probability for playtennis = no. playtennis.no <- sum((data[,1] == condition.vec[1]) & (data[,5] == "no")) / sum(data[,5] == "no") * # P(outlook = f_1 | playtennis = no) sum((data[,2] == condition.vec[2]) & (data[,5] == "no")) / sum(data[,5] == "no") * # P(temperature = f_2 | playtennis = no) sum((data[,3] == condition.vec[3]) & (data[,5] == "no")) / sum(data[,5] == "no") * # P(humidity = f_3 | playtennis = no) sum((data[,4] == condition.vec[4]) & (data[,5] == "no")) / sum(data[,5] == "no") * # P(wind = f_4 | playtennis = no) prior.no; # P(playtennis = no) return(list(post.pr.yes = playtennis.yes, post.pr.no = playtennis.no, prediction = ifelse(playtennis.yes >= playtennis.no, "yes", "no"))); } #预测 naive.bayes.prediction(c("rain", "hot", "high", "strong")); naive.bayes.prediction(c("sunny", "mild", "normal", "weak")); naive.bayes.prediction(c("overcast", "mild", "normal", "weak"));
$post.pr.yes
[1] 0.05643739
$post.pr.no
[1] 0
$prediction
[1] "yes"
原文:http://blog.csdn.net/yucan1001/article/details/23033931