我们都知道,已知中序和后序的序列是可以唯一确定一个二叉树的。
初始化时候二叉树为:==================
中序遍历序列, ======O===========
后序遍历序列, =================O
红色部分是左子树,黑色部分是右子树,O是根节点
如上图所示,O是根节点,由后序遍历可知,
根据这个O可以把找到其在中序遍历当中的位置,进而,知道当前这个根节点O的左子树的前序遍历和中序遍历序列的范围。
以及右子树的前序遍历和中序遍历序列的范围。
到这里返现出现了重复的子问题,而且子问题的规模没有原先的问题大,即红色部分和黑色部分。
而联系这两个子问题和原先的大问题的纽带是这个找到的根节点。
可以选择用递归来解决这个问题,递归的结束条件是子问题序列里面只有一个元素。
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
给定一个二叉树的中序和后序遍历序列,构造这个二叉树。
笔记:
你可以假定,这棵树里面没有重复的节点。
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You
may assume that duplicates do not exist in the tree.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
#include <iostream> #include <cstdio> #include <stack> #include <vector> #include "BinaryTree.h" using namespace std; /** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ TreeNode *build(vector<int> &inorder, int left1, int right1, vector<int> &postorder, int left2, int right2) { if(right1 - left1 != right2 - left2) { return NULL; } if(right1 >= inorder.size() || right2 >= postorder.size()) { return NULL; } //递归结束条件 if(left1 == right1 && left2 == right2) { TreeNode *root = new TreeNode(inorder[left1]); return root; } else if(left1 < right1 && left2 < right2) { TreeNode *root = new TreeNode(postorder[right2]); int i; for(i = right1; i >= left1; i--) { //找到中序遍历的根节点 if(inorder[i] == postorder[right2]) { break; } } if(i < left1) { return NULL; } root->left = build(inorder, left1, i - 1, postorder, left2, right2 + i - right1 - 1); root->right = build(inorder, i + 1, right1, postorder, right2 + i - right1, right2 - 1); return root; } else { return NULL; } } TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) { return build(inorder, 0, inorder.size() - 1, postorder, 0, postorder.size() - 1); } vector<vector<int> > levelOrder(TreeNode *root) { vector<vector<int> > matrix; if(root == NULL) { return matrix; } vector<int> temp; temp.push_back(root->val); matrix.push_back(temp); vector<TreeNode *> path; path.push_back(root); int count = 1; while(!path.empty()) { TreeNode *tn = path.front(); if(tn->left) { path.push_back(tn->left); } if(tn->right) { path.push_back(tn->right); } path.erase(path.begin()); count--; if(count == 0) { vector<int> tmp; vector<TreeNode *>::iterator it = path.begin(); for(; it != path.end(); ++it) { tmp.push_back((*it)->val); } if(tmp.size() > 0) { matrix.push_back(tmp); } count = path.size(); } } return matrix; } // 树中结点含有分叉, // 6 // / \ // 7 2 // / \ // 1 4 // / \ // 3 5 int main() { TreeNode *pNodeA1 = CreateBinaryTreeNode(6); TreeNode *pNodeA2 = CreateBinaryTreeNode(7); TreeNode *pNodeA3 = CreateBinaryTreeNode(2); TreeNode *pNodeA4 = CreateBinaryTreeNode(1); TreeNode *pNodeA5 = CreateBinaryTreeNode(4); TreeNode *pNodeA6 = CreateBinaryTreeNode(3); TreeNode *pNodeA7 = CreateBinaryTreeNode(5); ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3); ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5); ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7); int in[7] = {1, 7, 3, 4, 5, 6, 2}; int post[7] = {1, 3, 5, 4, 7, 2, 6}; vector<int> inorder(in, in + 7), postorder(post, post + 7); TreeNode *root = buildTree(inorder, postorder); vector<vector<int> > ans = levelOrder(root); for (int i = 0; i < ans.size(); ++i) { for (int j = 0; j < ans[i].size(); ++j) { cout << ans[i][j] << " "; } cout << endl; } DestroyTree(root); return 0; } |
结果输出:
6
7 2
1 4
3 5
ps.测试的输出用的是层次遍历
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
#ifndef _BINARY_TREE_H_ #define _BINARY_TREE_H_ struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; TreeNode *CreateBinaryTreeNode(int value); void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight); void PrintTreeNode(TreeNode *pNode); void PrintTree(TreeNode *pRoot); void DestroyTree(TreeNode *pRoot); #endif /*_BINARY_TREE_H_*/ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
#include <iostream> #include <cstdio> #include "BinaryTree.h" using namespace std; /** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ //创建结点 TreeNode *CreateBinaryTreeNode(int value) { TreeNode *pNode = new TreeNode(value); return pNode; } //连接结点 void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight) { if(pParent != NULL) { pParent->left = pLeft; pParent->right = pRight; } } //打印节点内容以及左右子结点内容 void PrintTreeNode(TreeNode *pNode) { if(pNode != NULL) { printf("value of this node is: %d\n", pNode->val); if(pNode->left != NULL) printf("value of its left child is: %d.\n", pNode->left->val); else printf("left child is null.\n"); if(pNode->right != NULL) printf("value of its right child is: %d.\n", pNode->right->val); else printf("right child is null.\n"); } else { printf("this node is null.\n"); } printf("\n"); } //前序遍历递归方法打印结点内容 void PrintTree(TreeNode *pRoot) { PrintTreeNode(pRoot); if(pRoot != NULL) { if(pRoot->left != NULL) PrintTree(pRoot->left); if(pRoot->right != NULL) PrintTree(pRoot->right); } } void DestroyTree(TreeNode *pRoot) { if(pRoot != NULL) { TreeNode *pLeft = pRoot->left; TreeNode *pRight = pRoot->right; delete pRoot; pRoot = NULL; DestroyTree(pLeft); DestroyTree(pRight); } } |
【构建二叉树】02根据中序和后序序列构造二叉树【Construct Binary Tree from Inorder and Postorder Traversal】,布布扣,bubuko.com
【构建二叉树】02根据中序和后序序列构造二叉树【Construct Binary Tree from Inorder and Postorder Traversal】
原文:http://www.cnblogs.com/codemylife/p/3652407.html