首页 > 其他 > 详细

POJ 3468 A Simple Problem with Integers

时间:2014-03-06 22:24:03      阅读:594      评论:0      收藏:0      [点我收藏+]

 A Simple Problem with Integers

Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 53810   Accepted: 16150
Case Time Limit: 2000MS

Description

You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.

Source

 

给一个数字序列A1,A2,A3,…,An,对它进行如下两种操作:

1、C a b c 对Aa,Aa+1,…,Ab每个数都加上c

2、Q a b 求Aa,Aa+1,…,Ab的和

 

首先想到涉及区间维护的可以用线段树求解,每个结点k中维护如下两个信息:

1、结点k所对应的区间[l,r)中每个Ai都要加上的数add[k]

2、结点k中各个数自己的值以及它们各自加上的值的和

代码如下:

 

bubuko.com,布布扣
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 
 5 using namespace std;
 6 
 7 int n,q,a,b,c;
 8 char w;
 9 long long num[100050],sum[300000],add[300000];
10 
11 void Init(int k,int l,int r)
12 {
13     if(l>=r-1)
14     {
15         sum[k]=num[l];
16         add[k]=0;
17         return ;
18     }
19 
20     int mid=(l+r)/2;
21     Init(k*2+1,l,mid);
22     Init(k*2+2,mid,r);
23     sum[k]=sum[k*2+1]+sum[k*2+2];
24     add[k]=0;
25 }
26 
27 void Add(int x,int a,int b,int k,int l,int r)
28 {
29     if(a>=r||b<=l)
30         return ;
31     if(a<=l&&b>=r)
32     {
33         add[k]+=x;
34         return ;
35     }
36     sum[k]+=(long long)x*(min(b,r)-max(a,l));
37     Add(x,a,b,k*2+1,l,(l+r)/2);
38     Add(x,a,b,k*2+2,(l+r)/2,r);
39 }
40 
41 long long Query(int a,int b,int k,int l,int r)
42 {
43     if(a>=r||b<=l)
44         return 0;
45     if(a<=l&&b>=r)
46         return add[k]*(r-l)+sum[k];
47     return Query(a,b,k*2+1,l,(l+r)/2)+Query(a,b,k*2+2,(l+r)/2,r)+(long long)add[k]*(min(b,r)-max(a,l));
48 }
49 
50 
51 
52 int main()
53 {
54     while(scanf("%d %d",&n,&q)==2)
55     {
56         memset(sum,0,sizeof(sum));
57         memset(add,0,sizeof(add));
58 
59         for(int i=1;i<=n;i++)
60             scanf("%lld",&num[i]);
61 
62         Init(0,1,n+1);
63         for(int i=1;i<=q;i++)
64         {
65             getchar();
66             scanf("%c",&w);
67             if(w==C)
68             {
69                 scanf("%d %d %d",&a,&b,&c);
70                 Add(c,a,b+1,0,1,n+1);
71             }
72             else if(w==Q)
73             {
74                 scanf("%d %d",&a,&b);
75                 printf("%lld\n",Query(a,b+1,0,1,n+1));
76             }
77         }
78     }
79 
80     return 0;
81 }
[C++]

 

之后用数状数组又写了一遍,比线段树要快一些

还是维护两个树状数组bit1和bit2,当要在区间[l,r]上同时加上x时,我们就执行如下四个操作:

1、在bit1的l位置加上-x(l-1)

2、在bit1的r+1位置加上xr

3、在bit2的l位置加上x

4、在bit2的r+1位置加上-x

设sum(bit,i)表示树状数组bit的前i项和,那么A1~Ai的和即为sum(bit1,i)+sum(bit2,i)*i(画个图很容易理解)

代码如下:

 

bubuko.com,布布扣
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #define MAX 100050
 5 
 6 using namespace std;
 7 
 8 int n,q;
 9 long long bit1[MAX],bit2[MAX];
10 
11 int lowbit(int x)
12 {
13     return x&(-x);
14 }
15 
16 long long sum(long long *c,int x)
17 {
18     long long ret=0;
19 
20     while(x>0)
21     {
22         ret+=c[x];
23         x-=lowbit(x);
24     }
25 
26     return ret;
27 }
28 
29 void add(long long *c,int x,long long t)
30 {
31     while(x<=MAX)
32     {
33         c[x]+=t;
34         x+=lowbit(x);
35     }
36 }
37 
38 int main()
39 {
40     while(scanf("%d %d",&n,&q)==2)
41     {
42         char ch;
43         int a,b,c;
44         long long temp;
45         for(int i=1;i<=n;i++)
46         {
47             scanf("%lld",&temp);
48             add(bit1,i,temp);
49         }
50         for(int i=0;i<q;i++)
51         {
52             getchar();
53             ch=getchar();
54             if(ch==C)
55             {
56                 scanf("%d %d %d",&a,&b,&c);
57                 add(bit1,a,(long long)c*(1-a));
58                 add(bit1,b+1,(long long)c*b);
59                 add(bit2,a,c);
60                 add(bit2,b+1,-c);
61             }
62             else if(ch==Q)
63             {
64                 scanf("%d %d",&a,&b);
65                 printf("%lld\n",sum(bit1,b)+sum(bit2,b)*b-sum(bit1,a-1)-sum(bit2,a-1)*(a-1));
66             }
67         }
68     }
69 
70     return 0;
71 }
[C++]

 

最近写线段树和数状数组发现,这类题目最关键的地方在于结点中要维护什么样的信息,以及这些信息如何组合出答案

POJ 3468 A Simple Problem with Integers,布布扣,bubuko.com

POJ 3468 A Simple Problem with Integers

原文:http://www.cnblogs.com/lzj-0218/p/3583956.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!