题目:
Given a binary tree, return the postorder traversal of its nodes‘ values.
For example:
Given binary tree {1,#,2,3}
,
1 2 / 3
return [3,2,1]
.
Note: Recursive solution is trivial, could you do it iteratively?
分析:
初看以为是很简单的递归后序遍历二叉树的结点,之后看到要返回一个ArrayList之后,感觉如果用平常的递归遍历访问二叉树结点的话,有可能会TLE或者是StackOverFlow,之后想到要用“非递归方式”后序遍历二叉树.
解题思路:
开一个Stack,由于root结点是最后访问的结点,所以我们先将root结点push到Stack中
我们写一个while循环,while循环结束的条件是栈中没有任何结点。
当栈中有结点的时候,我们将取出栈顶结点
1、判断下它是否是叶子结点(left和right都为null), 如果是叶子结点的话,那么不好意思,把它弹出栈,并把值add到ArrayList中,如果不是叶子结点的话,那么
2、我们判断下它的left(node.left)是否为null,如果不为null,把它的左孩子结点push到栈中来,并把它的左孩子域设为null, 然后跳过此次循环剩下的部分
3、如果它的left 为null, 把它的右孩子结点push到栈中来,并把它的右孩子域设为null,然后跳过此次循环剩下的部分!
图解:
package cn.xym.leetcode.binarytree; import java.util.ArrayList; import java.util.Stack; class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } public class Solution { public ArrayList<Integer> postorderTraversal(TreeNode root) { if (root == null) return null; ArrayList<Integer> list = new ArrayList<Integer>(); Stack<TreeNode> stack = new Stack<TreeNode>(); //先把最后访问的结点先放入到栈中,即根节点root stack.push(root); while (stack.size() != 0){ TreeNode top = stack.peek(); if (top.left == null && top.right == null){ list.add(top.val); stack.pop(); } if (top.left != null){ stack.push(top.left); top.left = null; continue; } if (top.right != null){ stack.push(top.right); top.right = null; continue; } } return list; } }
类似的题目:
Given a binary tree, return the preorder traversal of its nodes‘ values.
For example:
Given binary tree {1,#,2,3}
,
1 2 / 3
return [1,2,3]
.
Note: Recursive solution is trivial, could you do it iteratively?
AC代码:
package cn.xym.leetcode.binarytree; import java.util.ArrayList; import java.util.Stack; class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } public class Solution { public ArrayList<Integer> preorderTraversal(TreeNode root) { ArrayList<Integer> list = new ArrayList<Integer>(); ArrayList<Integer> list2 = new ArrayList<Integer>(); if (root == null) return list; Stack<TreeNode> stack = new Stack<TreeNode>(); stack.push(root); while (stack.size() != 0){ TreeNode top = stack.peek(); if (top.left == null && top.right == null){ list.add(top.val); stack.pop(); } if (top.right != null){ stack.push(top.right); top.right = null; continue; } if (top.left != null){ stack.push(top.left); top.left = null; continue; } } for (int i=0; i<list.size(); ++i){ list2.add(list.get(list.size()-1-i)); } return list2; } public static void main(String[] args) { Solution sl = new Solution(); TreeNode root1 = new TreeNode(1); TreeNode root2 = new TreeNode(2); TreeNode root3 = new TreeNode(3); TreeNode root4 = new TreeNode(4); TreeNode root5 = new TreeNode(5); TreeNode root6 = new TreeNode(6); root1.left = root2; root1.right = root3; root2.left = root4; root2.right = root5; root3.left = root6; ArrayList<Integer> list = sl.preorderTraversal(root1); System.out.println(list); } }
leetCode解题报告之Binary Tree Postorder Traversal,布布扣,bubuko.com
leetCode解题报告之Binary Tree Postorder Traversal
原文:http://blog.csdn.net/ljphhj/article/details/21369053