//code_002_basedataprojectmain.gopackagemainimport("fmt")typePowerstruct{ageinthighintnamestring}funcmain(){varstrstringstr="abc"ch:=str[0]fmt.Printf("str=%s,len=%d\n",str,len(str))fmt.Printf("str[0]=
分类:
其他 时间:
2018-10-04 08:31:11
收藏:
0 评论:
0 赞:
0 阅读:
146
今天有网友提出如何修改win2012r2的DC名称:具体方法如下:假设您有一个名为sub.domain.com的域名,其中包含一个名为West-AD01的AD控制器。FQDN将是West-AD01.sub.domain.ntst.com,假设我们需要将域控制器名称更改为East-AD01。以下是步骤:1)打开powershell作为管理员并运行:netdomcomputernameWest-AD0
分类:
Windows开发 时间:
2018-10-04 08:30:59
收藏:
0 评论:
0 赞:
0 阅读:
428
课程目标Excel表格的编辑包括很多方面,表格的格式化是表格编辑中对表格外观影响最大的一个方面。表格格式化的方法有很多,灵活应用这些美化手段,可以让你的表格与众不同。适用人群电脑爱好者、所有职场人士课程简介Excel表格的编辑包括很多方面,表格的格式化是表格编辑中对表格外观影响最大的一个方面。表格格式化的方法有很多,灵活应用这些美化手段,可以让你的表格与众不同。本课程章节计划表:第一章概述、直接应
分类:
其他 时间:
2018-10-04 08:30:13
收藏:
0 评论:
0 赞:
0 阅读:
124
CSS3背景背景主要包括五个属性:1·background-color(背景颜色)2·background-image(背景图片)3·background-repeat(背景图片展示方式)4·background-attachment(背景图片是固定还是滚动)5·background-position(背景图片位置)可以单独写,也可以将这些属性串在一起使用。background-color属性,用
分类:
Web开发 时间:
2018-10-04 08:30:00
收藏:
0 评论:
0 赞:
0 阅读:
147
Java中的锁机制:1API层面:Synchronized,AQS(CLH):ReentrantLock,ReentrantReadWriteLock,StampedLock(OrderedRWlocks)2JVM层面:SpinLock,Biased,Stack-Locked(轻量级锁),Inflated(重量级锁)Neutral:UnlockedBiased:Locked/Unlocked+Un
分类:
编程语言 时间:
2018-10-04 08:29:08
收藏:
0 评论:
0 赞:
0 阅读:
151
border-radius圆角圆形,border-radius制作圆角有两点技巧。-元素的宽度和高度相同。-圆角的半径值为元素宽度或宽度的一半或者直接设置圆角半径值为50%。2.半圆,border-radius制作半圆与制作圆形的方法是一样的,只是元素的宽度与圆角方位要配合一致,不同的宽度和高度比例,以及圆角方位,可以制作上半圆、下半圆、左半圆和右半圆效果。扇形,border-radius制作扇形
分类:
Web开发 时间:
2018-10-04 08:28:56
收藏:
0 评论:
0 赞:
0 阅读:
166
Excel表格的编辑包括很多方面,表格的格式化是表格编辑中对表格外观影响最大的一个方面。表格格式化的方法有很多,灵活应用这些美化手段,可以让你的表格与众不同。(常见问题)Excel中的主题功能是干什么用的EXCEL-主题与背景(让表格不再沉闷)你的主题你来定,让Excel的样式处理更高效!Excel如何添加主题,即设置文字、颜色及效果等【解决方法,教程视频资料如下】资料来源:http://edu.
分类:
其他 时间:
2018-10-04 08:28:36
收藏:
0 评论:
0 赞:
0 阅读:
136
TheNETLOGONshareisnotpresentafteryouinstallActiveDirectoryDomainServicesonanewfullorread-onlyWindowsServer2008-baseddomaincontrollerImportantThisarticlecontainsinformationabouthowtomodifytheregistry.M
分类:
Web开发 时间:
2018-10-04 08:28:26
收藏:
0 评论:
0 赞:
0 阅读:
245
关于jvm内存
分类:
编程语言 时间:
2018-10-04 08:27:52
收藏:
0 评论:
0 赞:
0 阅读:
161
###1、什么是面向对象编程?以前是用函数现在是类+对象##2、什么是类,什么是对象,他们又有什么关系?把函数放进类里class类:deffoo(self):passdeftoo(self):passobj是对象,是实例化后就得到一个对象(实例)obj=类()obj.foo()##3、什么时候适合用面向对象?1、根据一个模板创建东西的时候(cs里人的模板创建警察和劫匪)2、多个函数传入多个相同参数
分类:
其他 时间:
2018-10-04 08:27:03
收藏:
0 评论:
0 赞:
0 阅读:
134
【传送门】https://acm.ecnu.edu.cn/contest/113/problem/C/ 【题解】 推导过程: 【技巧】 (1)直接用二维数组存储矩阵肯定超内存,注意到K的范围该矩阵是一个稀疏的矩阵所以直接将其转化为线性的,a[(i-1)+j]表示其第i行第j列的状况 (2)注意到单个 ...
分类:
其他 时间:
2018-10-04 08:24:03
收藏:
0 评论:
0 赞:
0 阅读:
142
Eclipse的编辑功能非常强大,掌握了Eclipse快捷键功能,能够大大提高开发效率。Eclipse中有如下一些和编辑相关的快捷键。 此快捷键为用户编辑的好帮手,能为用户提供内容的辅助,不要为记不全方法和属性名称犯愁,当记不全类、方法和属性的名字时,多体验一下【ALT+/】快捷键带来的好处吧。 显 ...
分类:
系统服务 时间:
2018-10-04 08:23:45
收藏:
0 评论:
0 赞:
0 阅读:
208
题目大意是给定6个数对,每个数对代表一个面的长和宽,判断这6个面是否能构成一个长方体。 这种题一看很复杂,但是只要不想多了实际上这就是一个水题。。。 首先说明一下判断的思路: 1.长方体是有三个对面的,所以先把这三个对面找出来(因为输入的长和宽是不确定的,所以先把每一组输入的两个数按照从大到小进行调 ...
分类:
其他 时间:
2018-10-04 08:23:26
收藏:
0 评论:
0 赞:
0 阅读:
178
首先讲的这个东西是针对后台数据访问的比如我的后台是admin文件夹.那么我除非登陆成功才可以访问里面的东西.那么除了Session对象判断.和Cookies来判断还能用到FormsAuthentication.RedirectFromLoginPage 登录 首先我们在网站的根目录下的web.con ...
分类:
其他 时间:
2018-10-04 08:22:51
收藏:
0 评论:
0 赞:
0 阅读:
142
"传送门" 代码极短 $O(n^2)$dp是设$f_{i,j,k}$表示前$i$位,放了$j$个1,后面还可以接着放$k$个0的方案,转移的话,如果放0,$k$就要减1,反之放了1,后面可以多放一个0,所以$k$加1,即$$f_{i+1,j,k 1}+=f_{i,j,k}$$$$f_{i+1,j+1 ...
分类:
其他 时间:
2018-10-04 08:22:36
收藏:
0 评论:
0 赞:
0 阅读:
182
防静电图 首先我们要对下载下来的图片进行处理否则Altium designer6.9会提示装载的图片不是单色的,用Photoshop CS打开开始下载的图片 选择 图像→模式→灰度 在选择 图像→模式→位图 弹出选项直接点击确定 这是处理好后的图片 保存图片 选择保存BMP格式 点击确定 看看成品图 ...
分类:
其他 时间:
2018-10-04 08:21:52
收藏:
0 评论:
0 赞:
0 阅读:
378
拓扑序计数 时间限制: 1 s 空间限制: 128000 KB 拓扑序计数 时间限制: 1 s 拓扑序计数 时间限制: 1 s 空间限制: 128000 KB 空间限制: 128000 KB 空间限制: 128000 KB 题目描述 Description 求一颗有根树/树形图的拓扑序个数. 输入描 ...
分类:
其他 时间:
2018-10-04 08:21:36
收藏:
0 评论:
0 赞:
0 阅读:
251
$sudo chkconfig --level 3 sshd off[leiyf@leiyangfeng ~]$ls -l /etc/rc.d/rc3.d/K25sshd lrwxrwxrwx. 1 root root 14 Oct 3 11:12 /etc/rc.d/rc3.d/K25sshd - ...
分类:
其他 时间:
2018-10-04 08:20:58
收藏:
0 评论:
0 赞:
0 阅读:
217
题目传送门 道路费用 格式难调,题面就不放了。 分析: 这是一道要细(yan)心(jing)的生成树的好(gui)题。 首先我们看到$k$的范围非常小,那么我们就可以直接$2^k$枚举每一条加边是否选择。然后我们再按权值大小依次加原边并且更新可以影响的加边的权值上限,再树形DP求解。但是这样复杂度是 ...
分类:
编程语言 时间:
2018-10-04 08:20:39
收藏:
0 评论:
0 赞:
0 阅读:
200
内存图: ...
分类:
其他 时间:
2018-10-04 08:20:21
收藏:
0 评论:
0 赞:
0 阅读:
132